UNIT -l
LESSON-I

DIELECTRIC PROPERTIESOF INSULATORS
Objective of thelesson

To introduce the basic definitions in the theory of dielectrics like dipole, dipole

moment, polarization, polarizability and sources of polarization etc. To give the classification
of polarisations and to discuss the theory of orientation polarisation

Structure of the lesson

1.1.1. Introduction

1.1.2. Sources of Polarizability:
1.1.1. Introduction

Dielectrics are insulators i.e., non-conductors of eectricity. The function of any
insulator is to prevent the flow of electricity through it when a potential difference is applied
across its ends. These materials prevent the leakage of electrical charges in eectrical
devices. Substances like bakelite, PV C used in electrical wiring and pipes, polymer materias
etc., come under this category. Dielectrics possess high resistivity values in the range 10° Q-
m to 10 Q-m. Under high voltage bias, they alow very little current (10° A to 10 A).
They withstand very high voltages. The conduction phenomenon in dielectrics is mostly
associated with ionic motion through defects or hopping of charges. They have no free
charges. They consist of positively and negatively charged particles bound together. The
fundamental action of the electrical field is to separate positive and negative charges of the
entire volume of the dielectric, causing what is known as the polarization of the dielectric.
Fig.1.1.1 shows the effect of polarization in adielectric when external field Eq is applied on a
dielectric. We see that the net polarization charges produced at the faces of the dielectric, a
positive charge on the right and a negative on the left; inside the medium there is no excess
charge in any given volume element. The medium as a whole remains neutral, and the
positive charge on the right is equal in magnitude to the negative charge on the left. These
induced charges create their own electric field E, called polarization field that is directed to
the left, and thus oppose the external field Eo. When we add this polarization field E, to the

external



M.Sc. Physics 2 Dielectric properties of insulators

Fig.1.1.1 Effect of polarizationin adielectric.

field Eop, so as to obtain the effective field E, we find that E < E,. Therefore, effect of
introducing insulating substance (i.e., dielectric) results in reduction in applied field or
reduction in surface charge density. Thus, the polarization of the medium reduces the
electric field in itsinterior. During the polarization the charges in the dielectric are displaced
from their equilibrium positions by distances that are considerably less than atomic diameter.
There is no transfer of charge over macroscopic distances such as occur when a current is set

up in aconductor.

Dielectrics: Didlectrics are the insulating materials having electric dipoles permanently or

temporarily by inducement during the application of electric field.

Electric Field Strength or Intensity (E): The space around the charged body, up to where
itsinfluence felt is called Electric Field. Suppose an additional infinitesimal test charge qo is
brought into the electric field and at a certain point in it, it experiences an electrostatic force

F. The electric field strength or intensity E at the point is a vector and defined by

E= F volt/metre (1.1.1)
Ao

Electric Field Induction (or) Flux density (or) Displacement Vector (D): Consider a
charge q at the centre of a sphere of radiusr. The charge g will send q lines of force and this
will be received by surface area 4n r>. The number of electric lines of force received by a

unit areais called flux density or electric displacement D.
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= q = —
Arr? A

i.e., ; where A is the surface area of the sphere,

The unit of electric flux density is coulomb/metre®.

Electric dipoles. The system of two equal and opposite charges separated by certain
distanceis called eectric dipole.

q s p— g
O »O

Fig.1.2.1 An electric dipole

Electric Dipole moment: The product of any one of two charges of dipole and the
separation between them is called electric dipole moment.

Let the two charges are +q and —q separated by a distance r. The moment of this
dipoleis defined as

p=qr (1.1.2)

The dipole moment is therefore equal to the magnitude of the one of the charges times the
distance between them. The unit of electric dipole moment isesu-cm (10 esu-cm = 3.3 x
10%° C-m = 1 debye)
Polarization (P): The process of producing electric dipoles out of neutral atoms and
molecules is known as polarization. Polarization P in a solid is defined as the total dipole

moment per unit volume:

Y.ar
P:zpi = -

) y (1.1.3)

Here P is the total dipole moment (including the induced and permanent) and n is
the number of dipoles per unit volume. Polarization P has the same units as the
surface charge density (C-m=). This equivalence is substantiated by the fact that
electric field induces charges on the surface of the dielectric and the density of

charges is a measure of the extent of polarization.

Dielectric Constant: Dielectric constant or relative permittivity is defined as the ratio of

permittivity of the substance to the permittivity of the free space,
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Consider a parallel plate capacitor consisting of two plane parallel plates of area A
and separation d, charged with a surface charge density . If the space between the platesis
vacuum and if d is small compared with the dimensions of the plates, there will result an
electric field between the plates, whose strength is given by
E o= 4o

in esu. The potentia difference between the platesis equal to
Vyae=Evacd

and the capacitance of the capacitor is defined by
Ac

Crac= V_

vac

Suppose now that the space between the plates is filled with an insulating substance the
charge on the plates being kept constant. The new potential difference V is lower than V
and the capacitance is increased.

The static dielectric constant ¢ is then defined by

Vv C

Thus, the field strength is reduced from the value E, 4 to the value E, where
Evac —_

E
of  Ewx=D=cE (1.1.4)

€

or, in other words, the effective surface charge density on the plates is now changed from ¢ =

Evac | E

— t0 o=—.

Ar A
The effect of introducing the insulating substance is thus to reduce the surface charge density
by an amount

| Evac E ( 1) E (1 1 5)
c-0 = -— =(-1) — 1
A 4Ar A

Since the charge on the plates is being kept constant, the positive plate thus acquires a
negative induced surface charge density (c - o') and vice versa; whole of the dielectric
becomes a single dipole of moment (o - o')Ad. Under this condition, and using equation
(1.1.3) we see that (6 - o) = P. Thus, the quantity on the left hand side of the of equation

(1.1.5) isthe polarization of the dielectric and we can write
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E
P=(e-1) (1.1.6)

The above explanation of the induction of charges at the surface of the dielectric is in
accordance with that considered earlier.
From equations (1.1.5) and (1.1.6) we may write
D=E+4nP=¢E (1.1.7)
Dielectric constant expresses the properties of the medium: all dielectric and optical

properties of the medium are contained in this constant.

Susceptibility (x): Itisdefined as polarization per unit electric field.

It measures the amount of polarization a given field produces. In empty space P=0, y =0, ¢
=1
Polarizability (a): The strength of the induced dipole moment an atom acquires is directly
proportional to the strength of the externa applied field
i.e,px E
p=oaE
where « is known as dielectric polarizability. We can relate polarizability o, which is an

atomic property to the macroscopic property polarization P. It has the dimensions of volume.

1.1.2 Sources of polarizability:

Polarization occurs due to several microscopic mechanisms. Polarization is a consequence of
the fact that when an electric field acts on a molecule/atom, its positive charges (nuclei) are
displaced aong the field while the negative charges (electrons) in a direction opposite to that
of the filed. The opposite charges are thus pulled apart and the molecule is polarized. The
displacements of electrical charges result the formation of dipoles. Particularly in d.c.
electric fields, the macroscopic polarization vector P is created by three types of mechanisms

and hence polarization can be broadly classified into three types:

1. Electronic Polarization
2. lonic Polarization

3. Orientational Polarization
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1.1.2 (a) Electronic polarization: Electronic polarization is due to displacement of charge
centers of electron cloud (negative charge center) and nucleus (positive charge center) of an
atom in the presence of an applied electric field.

Although we are interested in the dielectric properties of solids, it will be useful to
consider first the much simpler problem of the behaviour of free atoms and molecules in an
externa field.

Consider an atom of a dielectric material such that its atomic number is equal to ‘Z
and atomic radius ‘r'. The centers of gravities of charges of electron cloud and positive
nucleus are at the same point and hence there is no displacement. Suppose if the atom is
placed in ad.c. eectric field of strength ‘E’, the nucleus and the electron cloud experiences
Lorentz forces of magnitude “ZeE” in opposite directions. i.e., nucleus and electron cloud are
pulled apart, therefore an attractive coulomb force develop between them. When the Lorentz
force and coulomb attractive forces are equal and opposite, there is a new equilibrium
between the nucleus and the electron cloud of the atom and hence dipole is formed. Let the

distance of separation between the centers of the displaced nucleus and electron cloud is‘d’.

Fig. 1.1.3 An atom without any field and with field.

The negative charge enclosed in the sphere of radius ‘1’ is equal to gﬂ' d®p

Where* p’ isthe charge density of electron cloud, and is equal to ;
3

—r
3
Therefore charge enclosed in the sphere of radius, d is,
_4 o Ze ~Zed?®
3 4 5 r3
—ar
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Therefore, Coulomb force of attraction, F.

Ze.[chargeenclosedin the sphereof radiusd].
—~ZeZed® -Z%ed
F. = FEPE = e

Lorentz force of repulsion experienced by the electron dueto applied field ‘E’ is

In equilibrium condition,

d="_E
Ze

= doc E
i.e., the separation between the two charge centersis proportional to the applied field ‘E’.

The induced el ectric dipole moment,

p=Zed=r, (1.1.8)

and the induced polarizability

3

Oe= — =T (12.1.9

m|o

Hence, o has the dimensions of avolume. It isalso evident that in general atoms with many
electrons tend to have alarger polarizability than those with few electrons.  Electronsin the
outer electronic shellswill contribute more to o than do electronsin the inner shells, because
the former are not so strongly bound to the nucleus as the latter. Positive ions therefore will

have relatively small polarizabilities compared with the corresponding neutral atoms: for

negative ions the reverseistrue. Few examplesof o aregivenin Table 1.1.1.
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Table 1.1.1 Electronic Polarizabilities of some atoms and ions.

Atoms Ole Positive Ole Negative Ole
(10%%cm?®) ions (10%cm?®) ions (10%cm?®)
He 0.29 Li* 0.02 F 0.85
Ne 0.39 Na 0.22 Cl 3.00
Ar 1.62 K* 0.97 Br 413
Kr 2.46 Rb* 1.50 I 6.16
Xe 3.99 Cs' 2.42

1.1.2 (b) Ionic polarization: lonic polarization is due to the displacement of positive ion
and negative ion of amolecule in the presence of an applied electric field and occursin ionic
crystals. One might suppose that an ionic crystal would possess polarization even in the
absence of an electric field, since each ion pair constitutes an electric dipole. But thisis not
S0, because the lattice symmetry ensures that these dipoles cancel each other every where.
So, the polarization in ionic crystals arises due to the fact that the ions are displaced from

their equilibrium positions by the force of the applied eectric field.

Consider an ionic compound composed of positive and negative ions separated by
inter atomic distance, r,, then the dipole moment is ‘er,’ in the absence of applied field.
When the field Ey is applied to the molecule, the positive ion is displaced in the direction of
field and negative ion is displaced in opposite direction until ionic bonding forces stop the

process. Thus the dipole moment increases.

< . P

(a)

»
»

X, —Pe—— To —uec@

(b)

Due to the ionic displacement the resultant dipole moment increases and is given by

p=e(X1+X2)
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where X; is the shift of positive ion and x; is the shift of negative ion with respect to their
equilibrium position.
Due to the application of static electric field Eo, the force produced may be taken as
F newtons and the restoring force on positive ion is Bi1x; and the restoring force on
negative ion is BoXo. Here B and B, are restoring force constants which depend upon the
mass of ion and angular frequency of the molecule in which ions are present.
Therefore, under equilibrium

F=Bwx1=Bx2
ek
xy= =0 (1.1.10)
By May,
where m is the mass of the positive ion and
F=ekg and B]_ = mm02
Similarly, for negative ion
eEO
X2 = 1111
? Mao? ( )
where M is the mass of negative ion.
Therefore, (x1+x2) = £2° [1 + ij (1.1.12)
w; \m M
And dipole moment
’E
D= e(Xytxg) = - (i + ij (1.1.13)
0, \m M
Therefore, ionic polarizability
2
o === (i+ij (1.1.14)
E, o; \m M

Thus ionic polarizability o;isinversely proportiona to the square of the natural frequency of

the ionic molecule and to its reduced mass where reduced mass

o)
_+_
m M
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1.1.2( c) Orientational Polarization: Orientation polarization is due to the alignment
of dipoles of polar molecules in the presence of applied electric field. Polar molecules have
permanent dipole moments even in the absence of an eectric field. These polar molecular
dipoles are randomly distributed in space in the absence of an electric field and hence the net
dipole moment of the dielectric is zero. But when dielectric is kept under electric field, the
field produces a torque in individual dipoles and there is a tendency for the field to align
dipole with the field and a net dipole moment per unit volume is originated in the dielectric.
If the field is strong enough, the dipoles may completely be aligned along the field direction.

The polarization due to the orientation, i.e, orientational polarizability ‘ o o’ .

E=0 E
—>
g

2\/;, —_,—

(@ (b)
dipolesin the dipolesin the
absenceof ‘E’ presence of ‘E’

Fig. 1.1.5 Orientational polarization.

Consider for example, a gas containing a large number of identical molecules, each with a
permanent dipole moment p. Without an externa field, the dipoles will be oriented at
random and the gas as a whole will have no resulting dipole moment. An externa field E
will exert a torque on each dipole and will tend to orient the dipoles in the direction of the
field.

+e
o———» ek

fo

v
t=

eE «——o0
-€

Fig. 1.1.6 Torque applied by afield on adipole.
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On the other hand, the thermal motion of the dipoles will counteract this ordering influence
of the external field. Therefore, an equilibrium state will reach in which different dipoles
will make zero to r radian angles with the field direction, producing a net polarization in the
direction of thefield. It isthis polarization that we are going to calculate.

Let us define the potential energy of a dipole making a 90° angle with the external
field as zero. The potentia energy corresponding to an angle 6 between p and E is equal to

—p Ecost =p.E
According to statistical mechanics, the probability for a dipole to make an angle

between 6 and 0+d6 with the electric field is then proportional to
21t sin 6 do exp[(pE cos 0)/KT]

where 2n sin 6 do is the solid angle between 6 and 6+d6. The number of dipoles having their
orientation between 6 and 6+d6 is also proportiona to this probability. Now a dipole of
moment p making an angle 6 with the field direction contributes to the polarization a

component p cos 6. Hence the contribution made by the above number of dipolesis
p cos 0. 2rt sin 6 dO exp[(pE cos 6)/KT]

and the average contribution per dipole p isgiven by

J' pcosd 27 sin@ db expl( pE cosh) /KT1]
p— o (1.1. 15)
j 275in6 dO exp[( pE cos®) / KT]
0

(6 = 0 corresponds to parallel alignment and 6 = ©t corresponds to anti parallel alignment of
dipoles).
Dividing numerator and denominator by 27 and letting

a= p_E , X =acoso , dx = -asind do,
kT
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equation (1.1.15) can be written as

_ p_fx e” dx

pP— —

ajeX dx
B = % _1 =coth a- 1 =L(a) (1.1.16)
p €°-¢€ a a

The function L(a) is called the Langevin function, since this first derived by Langevin in
connection with the theory of paramagnetism.  In Fig. 1.1.7 L(a) has been plotted as a
function of a = pE/KT. As aincreases, the function continues to increase, approaching the
saturation value unity as a — oo. This situation corresponds to complete alignment of the

dipolesin the field direction.
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Fig. 1.1.7. Langevin function L(a) versesa
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As long as the field strength is not too high and the temperature is not too low, the situation

may be strongly simplified by making the approximation a<<1 or E—E <<kT. Under these

circumstances the Langevin function L(a) = a/3, so then from equation (1.1.16)

S ol
I
—
—~
&
I

p=——E (1.1.17)
Hence, orientational or dipolar polarizability

p2
=— 1.1.18
3kT ( )

m|ol

Olo =

Hence, orientational polarizability o, decreases with temperature. Since higher is the

temperature, greater isthe thermal agitation and lower is‘ a ¢’

A large number of molecules have polarizability, yet not al the molecules. The
deciding factor for its existence is simply whether or not the molecules have a permanent
moment. The existence of a permanent moment is purely a matter of molecular geometry.
For example, CO, has no permanent moment at al, because its atoms are in line. On the
other hand different geometry of H,O molecule gives p=1.87 Debye unitsto it.

It may be noted that equation (1.1.18) is actualy applicable to liquids and gases,
because only in these substances the molecular dipole moment may rotate as continuously
and fregly as has been assumed in its derivation. In solids, a dipole may hop back and forth
between certain discrete orientations in a manner which depends on the temperature and the
electric field. Yet the dipolar polarizability for solids has been found to be of the same form

astheresult (1.1.18), expect for anumerical factor.

1.1.3 Summary

Physical quantities involved in the theory of dielectrics are defined. Various sources of

polarization are discussed. Details of three types of polarizations are discussed at in depth.
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1.1.4 Key-Terminology
Dielectrics-dipole-dipole moment—polarization-polarizability-dielectric constant-sources of

polarization.

1.1.5 Self-Assessment Questions

1. What do you mean by polarization of asolid? Explain polarizability of atoms and
molecules. Discuss different sources.

2. Obtain expressions for electronic, ionic and dipolar polarizability of adielectric material.

3. Discussthe classification solids on the basis of dielectric polarization.

1.1.6 Reference Books

1. Solid State Physics- A.J.Dekker (Macmillan India Limited).

2. Elements of Solid state Physics- J.P.Srivastava ( Prentice-Hall of India, New Delhi).



UNIT -l
L ESSON-2

DIELECTRIC PROPERTIES-STATIC ELECTRIC FIELD

Objective of thelesson

e Todiscuss Dielectric constant of gases with examples.
e Togivethereasonsfor the arise of local field and its calculation.
e To Discuss static dielectric constant of gases and solids
e To derive Classius—Mossotti equation
Structure of the lesson
1.2.1 Introduction
1.2.2 Static Dielectric Constant of Gases
1.2.3 Internal Field or Local Field
1.2.4 The Clausius-Mossotti Relation
1.2. 5 The static dielectric constant of solids

1.2.1 Introduction
In this chapter how the interna field influences the dielectric constant is described in
detail. The Classius —Mossotti relation that connects dielectric constant with the

polarizabilitiesis also derived

1.2.2 Static Dielectric Constant of Gases

We are now in a position to give an atomic interpretation of static dielectric constant
of agas. It will be assumed that the number of molecules per unit volume is small enough so
that the interaction between them may be neglected. In that case, the field acting at the
location of a particular molecule is to a good approximation equal to the applied field E.
Suppose the gas contains N molecules per unit volume; the properties of the molecules will
be characterized by an electronic polarizability o, anionic polarizability o;, and a permanent
dipole moment p. From the discussion in the preceding two sections it follows that, as a
result of the external field E, there will exist aresulting dipole moment per unit volume:

P= N(ae + 0; + p%3KT)E (1.2.1)
Note that only the permanent dipole moment gives a temperature dependent

contribution, because o and o; are essentially independent of T. If the gas fills the space
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between two capacitor plates of area A and separation d, the total dipole moment between the
plates will be equal to
M = PAd

This simple relation shows immediately that the same total dipole moment would be obtained
by assuming that the dielectric acquires an induced surface charge density P at the boundaries
facing the capacitor plates, as discussed in section 1.1.1. Hence the quantity P introduced in
moment per unit volume is identical with the quantity P introduced in section 1.1.1, where it
represented the induced surface charge density at the dielectric-plate interface. Therefore,
combination of (1.2.1) and (1.1.6) leads immediately to the Debye formula for the static

dielectric constant of gas.
E
P=(e-1) w N(oe + a; + p%/3KT)E
T

(e-1) = 4nP/E = 4nN(0e + a; + p*/3KT) (1.2.2)
As an example of an application of this formula, the temperature dependence of some
organic substances in the gaseous state isshown in Fig.1.2.8. Thevaluesof (¢ — 1) versus
the reciprocal of absolute temperature have been plotted, leading to straight lines, in
agreement with formula (1.2.20). From the slope of the linesand knowledge of the number
of molecules per unit volume, the dipole moment p may be obtained. Also, form the
extrapolated intercept of the lines with the ordinate, one can calculate (oetai). The
determination of dipole moments has contributed a great deal to our knowledge of molecular
structure. For example, CCl, and CH,, according to Fig. 1.2.8, do not possess permanent
dipole moments (indicated by zero slope), in agreement with the symmetric structure of these
molecules. Similarly, the fact that H,O has dipole moment of 1.84 Debye units, whereas CO,
has no dipole moment, indicates that CO, molecule has alinear structure, whereas in H,O the

two OH bonds must make an angle different from 180° with each other.
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1.2.3Internal Field or Local Field
In solids a molecule or atom experiences not only the external field, but the fields produced
by the dipolesaswell. Asaresult of the long range of Coulomb forces, the later contribution
cannot be neglected. This resultant field is called the local field, and is responsible for
polarizing individual molecules or atoms of solids.

To calculate the local field, we follow the method suggested by Lorentz. According
to this method, we select a small spherical region from the dielectric with the atom for which
the loca field must be calculated at the centre. The radius of the sphere is chosen large

enough to consider the region outside the sphere as a continuum whiles the region inside the

» 1070-1
N
1] \
o

2 .5 2 2.5 4
1000/T

Fig 1.2.1 Temperature variation of the static dielectric constant of some vapours.

sphere as the actual structure of the substance. We suppose that, placing it in a uniform

electric field between two oppositely charged parale plates has uniformly polarized the

o
c

Fig. 1.2.2 lllustrating the calculation of the internal field as described in the text

given dielectric.
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Now, since the part of the dielectric externa to the sphere may be replaced by a system of
charges induced at the spherical surface as shown in Fig. 1.2.1, the electric field at the center
of the sphere may be written as
Eioc =Eo+ Ep+ Es+ Eny (1.2.3)
Here E is the primary electric field due to the charge on the plates, E;, is the field due to the
polarization charges at the plate-dielectric interface, Es is the field due to the charges induced
at the spherical surface and E, dueto all the dipoles of the atoms inside the spherical region.
Now we know that Eo + E, = E, the macroscopic electric field inside dielectric. Hence,
Eic=E+Es+En (1.2.4)
Further, if we are considering crystals of high symmetry (such as cubic crystals) En, = 0.
This is because E, is due to al the dipoles inside the spherical surface, and in such crystals
these are randomly distributed in position.
We may then write
Eioc = E + Es (1.2.5)
It must be remembered that equation, (1.2.5) is not applicable to anisotropic materials, as the
assumption Ep, = 0 is not rue for them.

To determine the Es we proceed as follows:

v
t=

Pcos 6

v
}-U

Fig. 1.2.3 Enlarged view of the sphere.

Fig.1.2.3 shows an enlarged view of the sphere shown in Fig.1.2.2. The charge element on a

surface element dS of the sphere is equal to the normal component of the polarization times
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the surface element, that is, -P cosd dS. According to Coulomb’s law, this charge element
produces aforce, given by
gP cosé dS

r.2

dF = quop/r? = —

acting on atest charge g assumed at the centre of the sphere in this direction of r. Hence, the
field dE, at the centre due to this charge element is
Pcos6o dS

r.2

dEs= dF/q= — (1.2.6)

Now resolving dEs into components parallel and perpendicular to the direction of P, we can

see a perpendicular component will be cancelled due to an equal contribution from another

symmetrically situated surface element. Thus only the component of dEs along the direction
of Pwill contribute to the integral of equation (1.2.6) over the entire surface. Thus,

Pcos® 6 dS

E= | g (1.2.7)

Now the appropriate surface element dS in this case is the ring shown in Fig.1.2.10 so that

dS=2rrsind r do = 2x r? sinf dO, and the limits of integration with respect to 0 are from 0

to . Thus,

~——2n r”sind do,

=~ Pcos’0
Es= j -
. r

=2n Pj cos?0 sind do,
0

Thisintegra can be evaluated directly by making the substitution
z=cos0 and dz =-sind dob,
so that

] 28 -1
Es=-2nP j Zdz=-2n P[?}
1

1
_ 4z P
3

from equation (1.2.23) , we get

o= E+ ? (1.2.9)

(1.2.8)
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Thisequation is called Lorenz relation. This showsthat E;c isindeed different from E, asitis

expected. The former field is larger than latter, so the molecules are more effectively

polarized.
Substituting value of P from (1.1.6) we get
e = 2 ;2 (1.2.10)

Thisfield isreferred as Lorentz field.

The assumption Em = 0 isvalid for simple cubic lattice. It isaso valid for f.c.c. and
b.c.c. lattices and for crystals such as NaCl. It does not hold for al cubic crystals. For
example, in barium titanate, which has cubic symmetry E;, does not vanish.

Each type of atom in a given crystal has its own internal field because the
environment of the different atoms is generaly different. Thus the internal field at the

location of atoms of type 1, 2, etc. may be written in the form

Bioc1 = E +71P; Ejoc2= E + 2P, etc (1.2.11)
wherethe y’sare the internal field constants. Only if Em = 0 do we havey = 4r/3.
1.2.3 The Clausius-M ossotti Relation
Now we are in a position to relate the microscopic and macroscopic quantities defined
above. The dipole moment p of asingle atom is proportional to the local field, that is,
p=a Eoc
Where a is the electrical polarizability of the atom. If there are different types of atoms, the

polarizabilities are additive and the total polarization of an insulator containing N typesis
P= ziN:l N ot Bioc = Eioc ziN:l ni o

Where n; isthe number of i atoms per unit volume having polarizabilities o and acted
on by local field Ejoc. Substituting the Lorentz field (1.2.9) then gives

4P
P=(E+ T ) Zi,\il n; o

or, after rearranging terms

N
Zniai
I

= - (1.2.12)
E 1- [4:7;}2 na;

Further, equation (1.1.6) can be rewritten asto give

| o
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P_ e (1.2.13)
E A
Thus, combining equations (1.2.13) and (1.2.12) we get
N
no.
c—1 B IZ 1o
N
ar 1—(417[}2 no;
3 )5
e-1
£+2 4?” e (1.2.14)

PN,

If &l the atoms i are the same, then Zniai: no and n = , Where p =density, N, is

Avogadro number, and M is molecular weight. So, equation (12.14) can be written in this

case as
e-1 _ 4_7TPNaa
E+2 3 M
-1
M £ . Arr
or — - — Nao 1.2.15
o e+2 3 @ ( )

Equation (12.14) or (1.2.15) is caled the Clausius-Mossotti equation. It can be used to
determine the polarizabilities of the atoms if the dielectric constant is known. Further, the
dielectric constants of new materials can be predicted from knowledge of the polarizabilities.
This equation thus provides the necessary relation between the microscopic and macroscopic
guantities.
1.2. 4 The static dielectric constant of solids
From the discussions in the preceding sections it is evident that in general the dielectric
polarization P may be considered the sum of three contributions,
P=P.+P +P, (1.2.16)

where the subscripts e, i and o refer, respectively, to electric, ionic and orientation
polarization. This provides a basis for the classification of dielectricsinto three classes:
(i) Substances for which P, = P, =0 so that P =P,
(i) Substancesfor whichP,.=0and P=P, + P,
dily Substancesfor which all three contributions are different from zero.

Although the calculation of internal field is usually complicated by the fact that the
Lorentz expression (1.2.10) does not apply, some remarks may be made about each of these

classesin so far asthey apply to solids.



M.Sc Physics 8 Dielectric Properties —Static electric field

(i)  Substancesfor which the static polarization is entirely due to electronic displacements
are necessarily elements, such as diamond. If we assume for the interna field an expression

of the type (1.2.10), one obtains from the relation

Pe = NoeEjoc = (¢ -1 )E/4n (2.2.17)
The following expression for the dielectric constant:
e—1=4n N ad(1-Nyo) (1.2.18)

Where N represents the number of atoms per unit volume. In the particular case for which the
Lorentz expression for the internal field (1.2.18) is valid, y =4n/3. The resulting expression
is then usually written in the form of Clausius-Mossotti formula, which may be obtained by
substitution of (1.2.18) into (1.2.13):
(e -1)/ (e +2) = (4n/3)Nae (1.2.19)

the main experimental test of the correction of either (1.2.17) or (1.2.18) is provided by
measurements of the dielectric constant as function of the number of atoms per unit volume.
It has therefore been applied mainly to gases. For solid elements one would have to vary the
temperature in order to vary N and the possible range of N valuesis of course very limited.

It may be noted that for this class of substances under consideration, the dielectric
constant is equal to the square of the index of refraction, ¢ =n®. The reason is, that o is
constant even for frequencies in the visible spectrum. This relationship has been confirmed
experimentally for diamond and the dielectric constant of diamond is 5.68+0.03.

(i) In general, solids containing more than one type of atom, but no permanent
dipoles, exhibit electronic as well as atomic or ionic polarization. Of particular interest in this
respect are the crystals, such as the alkali halides. Consider, for example, aNaCl crystal in an
externa dtatic field E. Apart from the electronic displacements in the ions relative to the
nuclel, the positive ion lattice will tend to move as a whole relative to the negative ion lattice.
Consequently, a considerable contribution to the total polarization may be expected to arise
from the ionic displacements (P,). That this is indeed the case, becomes apparent from a
comparison of the values of the static dielectric constant defined by

Pe+Py=(e—1) E/4n (1.2.20)
and the “high-frequency dielectric constant” &, defined by
Pe=(s0—1) E/4n (1.2.21)

(The high-frequency dielectric constant is equal to the sguare of the index of

refraction for visible light; at such frequencies the ionic displacements cannot follow the field
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variations and consequently £, =n” is a measure only of P,). By way of illustration values for

e and g for akali halides are given in Table 1.2.1.

Table 1.2.1 Static and High —frequency Didectric constant for some Alkali Halides

€ €0 =n2
LiF 9.27 1.92
Nacl 5.62 2.25
LiCl 11.056 2.75

Hence P, is about two or three times Pe in these compounds. In non-ionic compounds, on the
other hand, P; isusually arelatively small fraction of Pe.

The observed difference between the static and high- frequency dielectric constants is
because of the difficulties involved in calculating quantitatively the internal field.

It may be noted that the force constant and the masses of the positive and negative
ions determine the infrared frequency associated with the lattice vibrations. It is therefore
possible to express the difference (es - €0) in terms of infrared absorption frequency of the
lattice.

(@iii)  In substances composed of molecules which bear permanent electric dipole
moments, the total polarization is made up of three contributions,
P=P.+ P, +P, (1.2.22)

Were P, corresponds to the dipolar contribution. There exists no genera
guantitative theory for dipolar solids because first of al the same difficulties arises in
evaluating the internal fields asin class (ii), and further more, the dipoles in such solids may
not able to rotate at al or only to some extent. The discussion must therefore be limited to
some qualitative remarks. As an example of a dipolar solid which behaves in a relatively
manner, the dielectric constant measured as function of temperature for
CsHsNOy(nitrobenzene) is shown in Fig. 1.2.11. It is observed that at the melting point there
islargeincrease in diglectric constant. Thisis interpreted as an indication that in the solid the
dipoles cannot rotate freely and P, is essentialy zero; in the liquid, aignment of the dipoles

in the field direction is possible, so that the increase in ¢ is determined by the now freely

rotating dipoles. The subsequent slow decrease in ¢ is a consequence of the thermal motion
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of particles, as may be understood from equation (1.2.17). In other cases, the behaviour may

be more complicated, as illustrated by Fig. 1.2.12, in which ¢ versus T has been plotted for

Hss. the melting point of H,S is 187.7¢K. in this case, the dipoles are apparently “frozen in”

at temperature below 103.5°K ;at this temperature the structure changes in such a manner that

the dipolar groups become mobile; as the temperature is further increased, the dielectric

constant decreases as a result of increased thermal motion. The other changes evidently affect

essentially the density of the material, i.e., N isreduced at these transition points.

1.2.5 Summary of thelesson

The local internal field in a dielectric has been calculated. The Classius-Mosetti relation that

governs the relation between the dielectric constant and various polarizabilities has been

derived.. The description of the static dielectric constant of gasses and solids has also been

presented.

1.26 Key -Terminology

Local field, Clausius-Mossotti relation, static dielectric constant of gases and solids.

1.2.7 Self-Assessment Questions

1 Obtain an expression for the local field that is responsible for polarizing atoms or
molecules of a substance.

2. Set-up Clausius-Mossotti relation between polarizability and dielectric constant of a
solid.
3. Discuss the static dielectric constant of gases and solids

1.2.8 Reference Books

1. Solid State Physics- A.J.Dekker (Macmillan India Limited).
2. Elements of Solid state Physics- J.P.Srivastava ( Prentice-Hall of India, New Delhi).
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Unit-|
L esson -3

DIELECTRIC PROPERTIES-ALTERNATING FIELDS
Objective

In this lesson we study the behaviour of dielectrics in aternating electric fields. This study
gives rise to complex dielectric constant and dielectric losses. We also study the frequency

dependency of dielectric constant and measurement of dielectric constant.

Structur e of the lesson

1.3.1 Introduction

1.3.2 The complex dielectric constant and Dielectric Losses
1.3.3 Dielectric Losses and Relaxation time
1.3.4 The classical theory of electronic polarization and optical absorption

1.3.5 Measurement of Didlectric constant
1.3.1 Introduction

We now take up the study of the behaviour of dielectricsin alternating electric fields.
Here agan we make use of the same basic atomic models used earlier and study the
behaviour of this model in alternating electric field. This study reveds that the dielectric
constant under these conditions is a complex quantity. The imaginary part of this complex

dielectric constant determines the dielectric losses of the material.

In the macroscopic theory of isotropic dielectrics under static fields, the electric flux
density D is proportional to the electric filed intensity E, so the D = ¢ E, where ¢ is a constant

defined as the electric permittivity and is a property of the dielectric.

When a dielectric material is subjected to an alternating field the orientation of the
dipoles, and hence the polarization, will tend to reverse every time the polarity of the field
changes. As long as the frequency remains low (<10° c/s) the polarization follows the
aternations of the field without any significant lag and the permittivity is independent of the
frequency and has the same magnitude as in static field. When the frequency is increased the
dipoles will no longer be able to rotate sufficiently rapidly so that their oscillations will begin

to lag behind those of the field. As the frequency is further raised the permanent dipoles, if
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present in the medium, will be completely unable to follow the field and the contribution to
the static permittivity from this molecular process, the orientation polarization ceases; this
usually occurs in the radio frequency range (10°-10"! Hz) of the electromagnetic spectrum.
At still higher frequencies, usudly in the infrared (10-10" Hz) the relatively heavy
positive and negative ions cannot follow the field variations so that the contribution to the
permittivity from the atomic or ionic polarization ceases and only the electronic polarization

remains.

The above effects lead to fal in the permittivity of a dielectric material with
increasing frequency, a phenomenon which is usualy referred to as anomalous dielectric

dispersion.

Dispersion arising during the transition from full atomic polarization at radio
frequencies to negligible atomic polarization at optical frequency is usualy referred to as

resonance absor ption.

Dispersion arising during the transition from full orientational polarization at zero or
low frequenciesto negligible orientational polarization at high radio frequenciesis referred to
asdielectric relaxation.

It should be possible to explain the frequency dependence of the dielectric constant
directly in terms of the electronic structure. It is known that the refractive index varies with
the wavelength of light in the optical region the phenomenon being known as dispersion.
Dispersion can be explained on the basis of classica theory which assumes that atom
contains electrons vibrating at certain natural frequencies characteristic of the atom and that
the application of an aternating field sets such electrons into forced vibration. Since the
molecules in a dielectric are represented as dipoles on bound charges, there must be equal
number of positive charges and negative charges because the dielectric is a neutral medium.
When an electromagnetic wave impinges on this bound charge, it is caused to oscillate and
therefore to radiate. If the frequency of the wave is not equal to the natural frequency of the
bound charge the forced oscillation will have small amplitude and the radiation is very weak.
This corresponds to molecular scattering. If the frequency of the wave is equal to the natural
frequency of the bound charge, there is resonance and a much larger energy form the wave
goes into the charge. In solid, liquid or gas at high pressure there is strong intermolecular
action and friction type forces cause heavy damping with the result that the dipole energy is
quickly dissipated. This corresponds to true absorption. In a gas at low pressure there is no

damping and the dipole radiate strongly. This is resonance radiation. The absorption of an
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electromagnetic wave by a conducting medium is easily explained because the conduction
has a large number of free electrons. When the wave arrives its energy makes the charge
move. The moving charge constitutes current and the usual dissipation of energy by the
current explains the absorption of energy.

At optical frequencies the permittivity is amost entirely due to the electronic
polarization. To determine the dependence of the electronic polarizability on the frequency of

the applied field we shall use the classical model of an electron elastically bound to the atom.

1.3.2 The complex dielectric constant and Dielectric L osses

When adidlectric is kept between a capacitor platesis subjected to an alternating field
the polarization P also varies periodically with time and so does the displacement D. In

general however P and D may lag behind in phase relative to E so that for example if
E = E, cosmt (2.3.1)

we have
D = Dy cos(wt-3) (1.3.2)

Do cos & coswt + Dg sin d sin wt

D; cosmt + D, sin ot
where 6 isthe phase angle,
Di=Dgcosdand D;=Dgsing. (1.3.3)

For most dielectric D, is proportional to E, but the ratio (DJ/Ey) is generally frequency
dependent. To describe this situation one may thus introduce two frequency dependent

dielectric constants,

g =—r=—_-°¢c0s8
D D, .

gi= —2=-29n§ (1.3.4)
EO EO

It is frequently convenient to sum these two constants into a single complex dielectric

constant,

g =g -igt (1.3.5)
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Thus D=g¢* Eg€”'=¢* Eg(cosot +isinwt)  (1.3.6)

Also we see that

tans = — (13.7)
&
Because both & and &" are frequency dependent the phase angle 6 is aso frequency
dependent. We shall now show that the energy dissipated in the dielectric in form of heat is

proportional to gx.

The current density in the capacitor is equal to? .
Thus JZE(G) _ 1d
dt Az dt
= %(— D, sinwt + D, cosot) (1.3.8)

using equations (1.1.4) and (1.3.2). Where, o is the surface charge density on the capacitor
plates.

The energy dissipated or absorbed per second in the dielectric is given by

2r

N
W = (Ej { JEdt (1.3.9)

Substituting for Jand E, from (1.3.8) and (1.3.1) one gets

e
w="2 ja)(— D, sinot + D, coset )E, cosa)tdt}

|
o 2%, 2r/w

W=—|-o IEO D, sinwt cosotdt + j E,D, cos® wtdt
4z 0 0

The value of integral containing D; isequal to zero and we are left with
W = (-2)D,E, =2 E2e™ (1.3.10)
8t 8r

Equation (1.3.10) tells that the amount of energy absorbed is proportional to sind since &' =
(Do/Eg) sin 8. The energy so dissipated in the dielectric medium is referred to as the dielectric
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loss. For thisreason sing is caled the loss factor and 6 is the loss angle (but it is customary)
to call tand as the loss factor; thisis correct only for small values of 6 becausetan 6 ~ sin 6 ~
d. The dielectric loss at low frequencies is mainly due to d.c. resistivity. But at high
frequencies the dielectric loss is mostly due to dipole rotations or to ionic transitions from the
lower energy states to higher energy states. Because of the upward transition the energy is
absorbed from the applied field. The losses associated with ions, the frequency of which fall
in the infrared region, are usually referred to as optical infrared absorption. Similarly, the
losses in the optical region, associated with the electrons, are referred to as optical

absorption.

1.3.3 Didlectric L osses and Relaxation time

Let us consider a dielectric, for which the total polarization Ps in a static field is

determined by three contributions,
Ps=Pe+ P + P, (2.3.11)

In general, when such a substance is suddenly exposed to an externa static field, a certain
length of timeisrequired for P to be built up to itsfinal value. In the present section it will be
assumed that the values of Pe and P, are attained instantaneoudly, i.e., we shall be concerned
with frequencies appreciably smaller than infrared frequencies. The time required for
orientational polarization, P, to reach its static value may vary between days and 102
second, depending on temperature, chemical constitution of the material, and its physical
state is called relaxation time.

To begin with we shall give a phenomenological description of the transient effects
based on the assumption that a relaxation time can be defined; we can then proceed to
consider the case of an alternating field. Let Pos denote the saturation value of P, as function

of the time after the field has been switched on is given by

Po(t) = Pos(1- €77) (1.3.12)
where t is the relaxation time.

dPy/dt = (U1) [ Pos— Po (1)] (1.3.13)

For the decay occurring after the field has been switched off, this leads to a well-known
proportiondity with €. In the case of an aternating field E = E, €', equation may

employed if we make the following change: Pos must be replaced by a function of time Pyg(t)
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representing the saturation value which would be obtained in static field equal to the
instantaneous value E(t). Hence for aternating fields we shall employ the differential
eguation

dPo/dt =(1/7) [[ Pos(t) — Po (V)] (13.14)

Now, our final goal is to express the real and imaginary parts of the dielectric constant in
terms of the frequency o and the relaxation time t. For this purpose we shal define the

“instantaneous’ dielectric constant ¢ by
P.+P =(cs—1)/4n E (1.3.15)
We may then write
Pos=Ps—(Pe+ P ) =(es- &4 )/4n E (1.3.16)

Where ¢s is the static dielectric constant and cei is the dielectric constant arising due to

electronic and ionic polarization. Substitution of Py into (1.3.14) yields
dPy/dt = (1/7)] (es- €a )dn Eo€®- P, ] (1.3.17)
Solving this equation, we obtain
Po(t) = CeVt + Vdn (es- e6)/(1+ior) Eo € (1.3.18)

The first term represents atransient. The total polarization is now also afunction of time and

isgiven by P(t) = P. + P + Py(t). Hence, for the displacement one obtains
D(t)= € E(t) = E(t) + 4n P(t) (1.3.19)

where ¢ is the complex dielectric constant. From the last two equations and from the

definition e = &' —i g=the following expressions result:
e(®) = g4 + (& - €6)/(1+H w1 (1.3.20)
e (o) = (g - £4) Ot/(1+in*t (1.3.21)

These equations are frequently referred to as the Debye's equations. In Fig. 1.3.1 the

guantities erand " are represented as functions of wt. It is observed that the dielectric
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€
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—

Fig. 1.3.1 Debye curves for ¢’ and &” as
function of frequency for adielectric with
asingle relaxation time

loss, which is proportional to g according to (1.3.10), exhibits a maximum for ot =1, i.e,,
for an angular frequency equal to 1/t. Also, for frequencies appreciably less than 1/z, the real
part of the didlectric constant &' become equa to the static dielectric constant. In this
frequency range, therefore, the losses vanish and the dipoles contribute their full share to the
polarization. On the other hand, for frequencies larger than 1/t, the dipoles are no longer able

to follow the field variations and the dielectric constant e approaches .

Note that for this type of mechanism the relaxation time decreases with increasing
temperature as so does the saturation polarization. It is of interest to observe that if the
guantities €' and € are measured at a constant frequency but at different temperatures, the

curves asindicated in Fig. 1.3.2 may be expected to result.

€

e

A

— T

Fig. 1.3.2 The dielectric constant as a
function of temperature at a given
frequency, as predicted from the model
discussed in the text
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1.3.4 The classical theory of eectronic polarization and optical absor ption
In Lesson 1.1 the concept of the static polarizability due to elastic displacements of
electrons and ions was introduced. In the present section the classical theory of this
phenomenon in aternating fields will be discussed. We have seen that restoring force
determining the displacement isin first approximation proportional to the displacement itself.
The discussion is therefore based on the model of a displacement itself. The discussions is
therefore based on the model of an elastically bound particle of charge e and mass m in an

alternating field Eo € may be written
d®x

m
dt?

+my %+ moZ X = e Exe® (1.3.22)

where o is the natural angular frequency of the particle; o= (f/m)“? where f is the restoring
force constant ; the second term on the left — hand side is a damping term, which results from
the fact that the particle emits radiation as a consequence of its acceleration and vy is the
damping factor. The solution for this forced damped vibration is

E i ot
x(t) == o€

S (1323
m w, -0 +iyo

Wefirst of all note that in astatic field, for v=0, this reduces simply to
X = eEo/mamg” or as = ex/Eq = €€/mag’ foro =0  (1.3.24)

Where o is static polarizability associated with the elastically bound particle. If we take for e
and m the electronic charge and mass, this expression would correspond to the contribution
of a particular electron to the electron polarizability. Now we have seen in Sec. 1.1.2 that the
electronic polarizabilities are of the order of 10 cm®; this gives a natural frequency vo =
wo/2n 10" per second. Thus, even for frequencies corresponding to the visible spectrum,
the electronic polarizability may be considered constant. If e and m refer to an ion, the
natural frequencies are of the order of 10™ per second, corresponding to the infrared part of

the spectrum.

The electronic polarizability is therefore

1

e2
Mo, —o° +iyo

a_ex_
o= — =
E

The complex dielectric constant is then gieven by
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47 Ne? 1

g(w) =1+ S
W, —0° +iyw

(1.3.26)

where N is the number of electrons per unit volume. This follows by using P =Nex and € =

1+4nP/E.

Now, from the definition of the complex dielectric constant e(w) = e(®w) — ie*(w)

Onefinds
A Ne? 0l w?
ef(w) = 1+ s > (1.3.27)
m (g —0°) +y "
2
e (o) = N8 ro (1.3.28)

m  (0f ~0®)?+y ‘o’

It may be noted that €'(®) gives us the value of the dielectric constant and from &*(®) we get
the power dissipated and hence the damping loss. The variation of (g — 1) and g*these

with frequency isshown in Fig. 1.3.3. Notethat e*hasa

e—1

>§>

©,
— oo

Fig. 1.3.3 Behaviour of & and & as
function of frequency in the vicinity of
the resonance frequency w,

maximum at ® = wp, The meaning of this maximum is that the material absorbs energy at the
natural frequency; this type of absorption is called resonance absorption. In the absorption
region, the dielectric constant & depends on frequency and one speaks in this connection of
dispersion. The region for which &' decreasing with frequency is referred to as the region of

anomalous dispersion.
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Total Polarizability

Let us now discuss the total polarizability o = a, +a; +0e It has been found that the total
polarizability of a dielectric substance shows marked difference in behavior when studied as
a function of frequency. To summarize the frequency-dependence of the polarizability we
have represented, in Fig.1.3.4, a(w) for adipolar substance. It isclear that as we go from the
static to the optical region, the polarizability o decreases by a substantial amount. Speaking
in terms of dielectric constant, the dielectric constant of water, for example is 81 at zero
frequency whileit isonly 1.8 at optical frequencies. Moreover, the decrease in polarizability
o is not uniform —remarkable decrease occurs only in the microwave, infrared and ultra-

violet regions.

a (real part)

Ot 0§+ 0 ]

Oe T+ 0

Oe

|
| | I | I
Micro Infrared UItra\/
waves violet

Fig. 1.3.4 Variation of total polarizability as a function of
frequency.

The behaviour of polarizability can be understood from the various possesses and
from the concept of the relaxation time for each process. When the frequency of the applied
field is much greater than the inverse of the relaxation time for a particular polarization
process, that particular polarization process fails and so it does not contribute to
polarizability. Thus, the decrease of total polarizability with increase in frequency is due to

the disappearance of o,, 0j and o SUccessively.
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1.3.5 Measurement of Dielectric constant

Dielectric constant of a given substance is usualy measured by comparing the
capacity Cq4 of a condenser filled with the substance and the capacity Cy of a the empty
condenser . Theratio % = g, isthe dielectric constant. The capacities Cy and Cy may be

0

measured by resonance  method as  shown in the Fig 1.3.4.

e . i ¢ == Specimen

D
Oscillator

Fig. 1.3.5 Principle of the resonance method for measuring C, and Cg.

In the figure, Csis acalibrated variable condenser and C is the condenser in which the given
substance which is taken in the form of a thin disc may be placed. By varying Cs so a sto
keep the resonance frequency

00z —— 1 (1.3.29)

VIL(C, +C)]

constant when C is empdty and then filled, we may determine CO and Cd, and hencee. The

voltmeter V measures the response of the resonant circuit.

This method is generaly used to measure the dielectric constant up to frequencies

100 Mhz. At the microwave region (~ 10°to ~10°> Mhz) the frequencies are so high that the
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dimensions of the apparatus are comparable with or greater than the wavelength, and the
specimen hen can no longer be treated as if it were in quasi-static fields. Rather, it has to be
treated as a medium for the propagation of € ectromagnetic waves. Here we may measure the
dielectric constant of the specimen by measusring the wavelength of the microwave radiation

in the specimen and using the relation

ﬂ“wacuum — (8“)1/2 (1330)

A

specimen

where U is the permeability; for non-magnetic materias, | ~ 1. For optica and infrared
frequencies, & can be measured by measuring the refractive index, n as

NP=egpl ~¢

1.3.6 Summary of the lesson

When a dielectric material is subjected to an aternating field the orientation of the
dipoles ater in accordance with the field changes. At higher frequencies dipoles will no
longer be able to rotate sufficiently rapidly and unable to follow the field and the permittivity
of the material decreases. The average time taken by the dipoles to orient in the field

direction is known as rel axation time.

When a dielectric is subjected to an aternating field, the polarization and
displacement vector also vary periodically with time and this gives rise to complex dielectric
constant. Dielectric constant depends on the frequency of the applied electric field. When a
dielectric is subjected to aternating field, the electrical energy is absorbed by the material
and dissipated in the form of heat. This dissipation of energy is called dielectric loss.
Debye's equations relating dielectric loss and relaxation time are

(o) = g4 + (& - €6)/(1+H v’
e (o) = (g - £4) Ot/(1+in*t

The losses associated with ions, the frequency of which fall in the infrared region, are called

as optical infrared absorption and the losses in the optical region, associated with the

electrons, arereferred to as optical absor ption.
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1.3.7 Key- Terminology

Complex dielectric constant-dielectric losses-optical infrared absorption- optical absorption-

resonance absorption-relaxation time Debye’ s equations-measurement of dielectric constant
1.3.8 Self-Assessment Questions
1. Explain the behaviour of dielectricsin an alternating electric field.

2. Obtain the expression for the energy absorbed per second in dielectric material when

an alternating electric field is applied.

3. Deduce Debye's equations relating dielectric loss and relaxation time.

4. Explain the phenomenon of optical absorption on the basis of classical theory.
5. Discussthe variation of total polarizability as afunction of frequency.

6. Explainthe method to determine dielectric constant of a substance.

1.3.9 Reference Books
1. Solid State Physics- A.J.Dekker (Macmillan India Limited).
2. Elementsof Solid state Physics- J.P.Srivastava ( Prentice-Hall of India, New Delhi).



Unit-
Lesson-4
FERROELECTRIC CRYSTALS
Objectives
® To present in detail the properties of ferroelectric crystals and their classification.

® To discussion on the ferroelectric transitions of BaTiOz based on thermodynamic

theory

Structure of the lesson
1.4.1. Introduction
1.4.2. Representative crystal types of ferroelectrics
1.4.3. Theory of the ferroelectric displacive transitions
1.4.4. Thermodynamic theory of the ferroelectric transition
1.4.5 Ferroelectric Domains
1.4.6 Antiferroelectricity

1.4.1 Introduction

When the centre of a positive charge does not coincide with the centre of negative
charge in a primitive cell, the primitive cell possesses an electric dipole moment even in the
absence of applied electric field. Thus the crystal as a whole has a polarization implying that
it is spontaneously polarized The shifting of positive charge from the centre of negative
charge is exhibited in the lack of centre of symmetry in the crystal. Out of 32 crystal point
groups, 21 point groups do not have a centre of symmetry. Except one point group, which is
highly symmetric, the rest 20 point groups represent an extremely useful class of materials,
known as piezoel ectrics.

Piezoelectrics. Piezoelectric crystals show electric polarization on being externally strained
and conversely, show deformation when placed under the influence of an applied electric
field. Thiswas discovered by French physicists Pierre curie and Paul-Jean Curie in the year
1980. If the crystal belongs to any one of the above 20 point groups, it can be predicted that
the crystal would be piezoelectric.  Ammonium phosphate, quartz, PZT (Lead Zirconate
Titanate) are some examples of piezoelectric crystals.

Pyroelectrics: Among the class of 20 crystal point groups which lack centre of symmetry,
10 crystal point groups are spontaneously polarized. These spontaneously polarized
dielectric crystals are called pyroelectric crystals. The polarization in pyroelectric crystasis



M.Sc. Physics 2 Ferroelectric Crystals

usually masked by surface charges that accumulate on the surface from the atmosphere and
subsequently neutralize the layers of ions. But, when the temperature of the crystal is altered,
the masking is no longer complete as the polarization changes because of thermal expansion
or contraction of the crystal. Owing to the thermal effect on polarization, these crystals are
named pyroelectric (pyro means fire). The thermal effect accompanying deformation thus
supports the piezoelectric property of the crystals. This only confirms that all pyroelectric
crystals are piezoel ectric, though converseis not true.

While maintaining the crystalline properties, the symmetry operations of a
pyroelectric crystal must preserve the direction of polarization P. This imposes severe
restrictions on the point group symmetries as a result of which only 10 point groups are
found to meet the conditions of pyroelectric crystals. The rotation is allowed about only one
axis that is parallel to P and there cannot exist mirror planes perpendicular to this axis. The
structural scrutiny of crystal groups reveals that only the following point groups meet the
restrictions of pyroelectric crystals:

Cn, Cv (N =2,3,4,6), C; and Cyp,

Thus the pyroelectric property too, like piezoelectricity, is solely determined by the
symmetry properties of crystals.

Ferroelectrics. Ferroelectric crystals have additional property that the polarization in them
can be changed and even reversed by an external electric field. On the other hand, thisis not
possible in pyroelectrics even with the maximum electric field that may be applied without
causing electrical breakdown. The additional feature of ferroelectrics that distinguishes them
as aspecial class of pyroelectrics does not follow from the characteristics of crystal structure.
It is established only on the basis of dielectric measurement.

Furthermore, the additional feature of ferroelectrics mentioned above converts the
usual linear relationship between polarization and applied electric field into a hysteresis loop.
Since the dielectric behaviour of these materias is in many respects analogous to the
magnetic behaviour of ferromagnetic materials, they are called ferroelectric solids, or
ferroelectrics. The ferroelectric behaviour is observed only below a certain temperature,
called the Curie point, T.. A ferroelectric is spontaneously polarized, i.e., it is polarized in
the absence of external field; the direction of the spontaneous polarization may be atered
under influence of an applied electric field. In general, the direction of spontaneous
polarization is not the same throughout a macroscopic crystal. Rather, the crystal consists of
a number of domains; within each domain the polarization has a specific direction, but this

direction varies from one domain to another.
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1.4.2. Representative crystal types of ferroelectrics

In general the ferroelectric crystals may be broadly classified into four representative groups
such asi) llmenites and Perovskites, ii) KDP typeiii) TGS type and iv) Rochelle salt type as
given in Table 1.4.1. The table gives the Curie point T, and the spontaneous polarization Ps
for anumber of common ferroelectric crystals. The electric susceptibility y in the paraelectric
C

T-T

c

phase is related to temperature by the Curie- Weisslaw:  y =

where C isthe Curie constant.

The ferroelectric crystals are also distinguished on the basis of oscillatory nature of
the atomic displacements that destroy the ferroelectric dipole order above the Curie
temperature. In the ferroelectric phase of some crystals, the atomic displacements can be
viewed as oscillations about a polar site. In the paraglectric phase these oscillations take
place about anon-polar site. The phase transition that brings about this transformation in the
nature of oscillations is called a Displacive phase transition. These crystals are accordingly
identified as Displacive type. The well-known examples of this class are ionic crystals with
ilmenite and perovskite structures. The GeTe is the simplest ferroelectric crystal having the
ilmenite structure (i.e., NaCl structure) and BaTiOs; is the representative crystal of

perovskites.
Table 1.4.1 Data on some representative ferroelectric crystals
Group Crysta T«(K) Ps At T (K)
C/m?x10”
[Imenitesand GeTe 670 - e
Perovskites LiNbO; 1480 71 296
KNbO; 710 30 600
BaTiOs 393 26 300
SITiOz 32 3 4.2
KDP type KH,PO, 123 4.7 100
KD,PO, 213 55 100
RbH,PO, 147 5.6 90
KH,ASO, 97 5.0 78
TGStype  (Nh,CH,COOH)s.H,S0, 322 2.8 275
(Triglycine sulphate)
Rochelle NaK C,H405.4H,0 296(upper) 0.25 275
Salt type (Rochédlle salt) 255(lower)
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There is another very interesting class of crystals in whose non-ferroel ectric state the
potential energy function around certain atomic sites is double-well or multiple-well shaped.
On the transition to the ferroelectric state the atomic displacements about those sites are
executed as oscillations in an ordered subset of the referred potential wells. It involves an
order-disorder type of phase transition. Common examples of these crystals, classified as

order-disorder type, are some

hydrogen bonded solids, namely KDP type crystals. The replacement of hydrogen by
deuterium in KDP type crystals raises the Curie point in an amazing proportion. Though the
increase in the molecular weight is less than 2 percent, the T, rises from 123K to 213K in the
deuterated KDP and from 96K to 162K in KD,ASOj,.

For specific description, Rochelle sdt and BaTiOs; are chosen as the two
representative compounds of ferroel ectrics whose properties are uniquely different.
a. Rochelle Salt
The first solid which was recognized to exhibit ferroelectric properties is Rochelle sdlt, the
sodium-potassium salt of tartaric acid; it has the chemical formula NaK C4H406.4H,0. It was
first prepared in 1672 by a pharmacist Seignette who lived in Rochelle. It represents the
tartaric group of salts whose other well known member are lithium ammonium tartrate and
lithium tantalum tartrate. The most noteworthy characteristic of Rochelle salt is that it is
ferroelectric between two temperatures (255K and 296K). On account of its two transition
temperatures, Rochelle salt becomes a specia and peculiar example of ferroelectrics.

The crystal structure of Rochelle salt is somewhat complex. Above 296K and bellow
255K the structure is orthorhombic (three mutually perpendicular axes ab,c). It has a
monoclinic symmetry in the ferroelectric phase such that the angle (between the c- and a
axes) differs from 90° and the spontaneous polarization is along the origina orthorhombic a-
axis. Thus Rochelle salt has only one polar axis and two possible polarization directions (+
and — aong the a axis).

Halblutzel has measured the dielectric constant of Rochelle salt along the three crystal
axes over the whole useful range of temperatures. Figure 1.4.1 gives a logarithmic plot of
these values. The Curie-Weiss law applies above 296 K and below

255 K. With the help of the experimental datait is easy to confirm that the two regions have

different values of Curie constants. The dielectric constant measured along the polar axis &,
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peaks at both transition temperatures, assuming a value as high as 4000. The behaviour of
spontaneous polarization as a function of temperature is shown in fig 1.4.2. The lower curve
represents Rochelle salt and the upper curve belongs to the deuterated salt.

|

255K 296 K

w
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Monoclinic

> logyy ¢
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—-’Z(K)

Fig. 1.4.1. Variation of dielectric constant of Rochelle salt with temperature.

4l KNaC,H,D,04 * 4D,0

KNaC,H,0;  4H,0
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Fig. 1.4.2. Variation of the spontaneous polarization with change in temperature. The lower
curve represents original Rochelle salt and the upper curve represents the deuterated salt.

b. BaTiOg
The BaTiOs is the most important and most completely investigated representative of

the perovskites type ferroelectrics. In the non-ferroelectric state (i.e. above 393 K) it has
cubic symmetry as shown in Fig.1.4.3 (a). The B&*" ions are positioned at the corners, O
ions at the centre of the faces and the Ti*" ion is located at the centre of the cube. It has an



M.Sc. Physics 6 Ferroelectric Crystals

arrangement of highly polarizable oxygen ions in the form of an octahedron with a small

titanium ion at the centre [Fig 1.4.3(b)].

o Tit

(a)
Fig. 1.4.3. @) Unit cell of BaTiO3 (perovskite structure) b) Main distortion in BaTiO3; Unit

cell that givesriseto ferroelectricity.
The dielectric and spontaneous polarization over arange of temperatures are shown in

figs. 1.4.4 and 1.4.5, respectively.
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Fig.1.4.4. Variation of the dielectric constant BaTiO3z with change in temperature.
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Fig. 1.4.5. Behaviour of the spontaneous polarisation of BaTiOs with variation in

temperature.



Acharya Nagarjuna University 7 Centre for Distance Education

The curves clearly indicate that there are three ferroelectric phases of crystal whose brief

details may be put as:

Temperature Direction of Ps Crystalline symmetry
range

278-393 K [001] Tetragonal

193-278 K [011] Orthorhombic
<193K [111] Rhombohedral

When the dipole order setsin at 393 K, there is an expansion of the crystal aong one pseudo-
cubic axis(c-axis) accompanied by a contraction along each of the axes perpendicular to this
direction. The distortions produced in the crystal below the Curie point are explained in fig.
1.4.3(b). The sub-lattice of all the Ba®* and Ti** ions is shifted with respect to the sub-lattice
of the O% ions, the displacement d being barely ~0.1 A%t room temperature. This leads to

the dipole moment per unit cell p, given by

p=6e.d=0.96x10%*Cm

The dipole moment p can alternatively be estimated by multiplying Ps (as obtained
from Fig.1.4.5 at room temperature) by the unit cell volume. Treating the unit cell asasimple
cube of edge 4 A° even in the ferroelectric state, we get p = 0.3(4 x 10°)* = 1.92 x 10% C
m. Thus we find this value agrees very well with that obtained on the basis of the observed
deformation of the unit cell. The order of magnitude gives a measure of the ferroelectric
effect in BaTiOs.The effect, however, isfairly large in some other perovskites (e.g. LiNbOg).

The fact that Fig.1.4.5 shows Ps along the [001] direction, warrants our further
attention. This implies that we must multiply the values shown in the figure by V2 and V3 to
obtain the actual valuesin theregions 193 K < T < 278 K and T<193K, respectively, because
the direction of Psin these regions is along the [011] and [111] directions, respectively. It is
then quite interesting to note that spontaneous polarization (same as the saturation

polarization) remains almost constant below 300K.
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1.4.3. Theory of theferroelectric displacive transitions

The theory that gives a good account of transitions in perovskites type crystals merits a
separate treatment on account of having stood the test of vast experimental data. These
crystals generaly undergo a displacive transition at the Curie point. We can follow two
approaches for finding interpretation to a displacive transition. One approach is the
polarization catastrophe and the other one is the soft mode appr oach.

The polarization catastrophe refers to an unusual situation in which the polarization
becomes infinitely large. In this condition the force exerted by the local eectric field is
greater than the elastic restoring force. This produces an asymmetric shift in the positions of
positive and negative ions. The shift is, however, limited to a finite displacement by the
anharmonic restoring forces.

In the soft mode approach a transverse optical (TO) mode is frozen, i.e. its frequency
vanishes at some point in the Brillouin zone below the Curie temperature. This TO mode is
known as a soft mode. When ot = 0, the crystal becomes unstable because of the absence of
an effective restoring force.

Polarization Catastrophe
The Clausius-Mossotti relation (1.2.14) can be rearranged in the form
3(N;a; + Na,)
3¢, —(N,a; + No,)

e=1+ (14.2)

where
N; and N are the density of polarizable ion pairs and electrons, respectively and
a;j and ae are theionic and electronic polarizabilities, respectively.

When
(Njo; + Nea.) = 3, (1.4.3)

the dielectric constant becomes infinite [from 1.4.2], giving the state of polarization
catastrophe.

Further,
P = (Njoi + Nete) Ejoc

= (Nioi + Neie) {E+ 351} (1.4.4)

0
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for acubic crystal (using Lorentz expression for Eq).
If E =0, then from (1.4.4) we have

N;a; + N,

0

But, when the polarization catastrophe occurs, the quantity within the brackets equals zero
[from (1.4.3)].
Thisrequires that

P£0 (1.4.6)
for (1.4.5) to betrue.
Thisresult (1.4.6) istrue only when applied field is zero.
In order to understand the above situation, let us consider a highly polarizable ionic crystal of
cubic symmetry. Let a be the total polarizability and p the dipole moment of an ion pair. Let
us assume that some transient stray field starts polarizing the ion pairs. The ion pairs will
keep on polarizing until some resistance develops to stop the process. The resistance that
finally stops the process of polarization exists in the form of anharmonic restoring forces.

The dipole moment of asingleion pair with ion separation x is

P=qx=a B = (ﬂj (14.7)
q

where F is the restoring force that tends to bring the positive and negative ions together and g
isthe charge on each ion.

The work required to create N such dipolesin the unit volume of the crystal is
2 2
Er=N [Fux = Na~ [ xax = NP” - (sing 1.4.7) (1.4.8)
o 2a

P2
" N2«
On the other hand, the energy density associated with the electrical displacement due to Ejec

is

E,= j Eloc. dP

=j(E+38iOJ.dP
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P2
=+ j E.dP (1.4.9)
6¢,

since E; is set against E,, the net energy density of a polarized dielectricis

E,—E; = ZPNZa (3'\'8—00‘ - j + j E.dP (1.4.10)
This shows that even when E = 0, E2>E1, provided that
Noa >3gg (1.4.12)
The above condition in ageneral caseiswritten in the form
D N,a; 3¢ (14.12)
i

where Nj stands for the density of the j th type of particles (iong/electrons) in the crystal and
o; denotes the polarizability of asingle particle of this type.

The sign of equality in (1.4.12) describes the condition of polarization catastrophe
(1.4.3) with

D Nia; = NiAj+Ne e (14.14)
j

From relation (1.4.10) it follows that the energy of the crystal becomes smaller in the

presence of induced dipoles. The minimum value of z N;a; for which the ferroelectricity
j

would occur is 3gp. In any rea ferroelectric crystal the situation that exactly corresponds to

the polarization catastrophe is not found. However, a small deviation in the value of

Z N, ; from 3go changes the value of ¢ (1.4.2) by alarge amount.
J
If we express D" N,a; = 3¢e0-3p
i

with f<<1 and using (1.4.2), we get
1
goC — (1.4.15)
B

If we assume that B is a linear function of temperature near the Curie point and given by
_ T _Tc
n

p (1.4.16)

1 being a constant, then
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1
T-T,

€ oC

(1.4.17)

The temperature dependence of ¢ as a given by this relation is in excellent agreement with
the observed behaviour in several perovskite crystals.

Ferroelectricity in perovskite crystal is understood in view of the following remarks made in
respect of barium titanate:

1. The titanium ion motion. The barium ions situated at the cube corners leave a
big void at the centre position. Since titanium ion is smaller than barium ion, it is
unable to fill the void and is free to rattle around in the void. Because the ionic
polarizability is ameasure of the ease of displacement, its value increased.

2. The non-cubic symmetry around oxygen ions. Unlike the barium and titanium
ions, the oxygen ions are in the non-cubic environment. An oxygen ion has only
two nearest neighbours in the form of titanium ions. Because of this reason, Ejqc
is greater than the value given by Lorentz expression.

A larger value of a predicted under point 1 leads to a smaller value of deformation energy E1
or the work required to create induced dipoles. Similarly, a large value of E;o as expected
under point 2 implies that the dipolar attraction will be larger. Thus, larger values of both a

and Ej. are favourabl e to the onset of ferroelectricity.
Soft mode appr oach

As mentioned earlier, a ferroelectric state can be regarded as a frozen in TO phonon.

According to Lyddane-Sachs-Teller relation (popularly known as LST relation)

2
O €

0

CHOER
where g is the static dielectric constant , e« isthe dielectric constant at optical frequencies,
wT1o and m o are the transverse and longitudinal optical mode frequencies.

Above expression shows that as &5 increases, wro decreases; thus, in the case of an infinitely
large &5, which happens at the Curie point (T.), wto may even be zero. In practice , es remains
finite on approaching T.. The TO modes in question are called soft modes. Such TO modes
have surprisingly low frequencies. For example, BaTiO3; has a soft mode of frequency 12

cmt at 297 K which islow for a TO mode.

We are not concerned here with LO phonons whose frequency is higher for the same value of

the wave vector. At the transition point T, when wro approaches the zero vaue, the crystal

11
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becomes unstable and anharmonic elastic forces come into play. In the presence of

anharmonic forces, oo may show atemperature dependence of the form
wZ o (T-Tc) (1.4.18)

On assuming that oo are temperature dependent, the LST relation in view of (1.4.18) gives

L= (1.4.19)
&

Experimental results on several perovskite ferroelectrics strongly support that a large static
dielectric constant (es) is associated with a low TO phonon (the soft mode). In view of
(1.4.18) and (1.4.19) the temperature dependence of the energy of a low frequency TO
phonon can be directly compared with that of the inverse dielectric constant, as shown in
Fig. 1.4.6 for a KTaO3 crystal. To have a clear idea, a schematic representation of the

temperature dependence of &7, w?, and the saturation polarization Psis shown in Fig. 1.4.7

Thea (1A12 (ma\/2)

20 .

I I I I I
0 50 10 15 20 25 30

Temperature (K)

Fig. 1.4.6 Temperature dependence of TO mode at K = 0 in KTaOs. The
square of the phonon energy (points) is compared with the reciproca of the
dielectric constant (dashed line)
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Temperature, T

Fig. 1.4.7.
1.4.4. Thermodynamic theory of theferroelectric transition

It is of interest to investigate the behaviour of a ferroelectric in the vicinity of its transition
temperature T, on the basis of thermodynamic arguments. A thermodynamic theory has the
advantage of being independents of any particular atomic model and thus leads to quite
general conclusions. Although such a theory does not provide the physical mechanism
responsible for the ferroelectric properties of a given material, it does point to certain features
one should look for in atomic models.

Consider a crystal which is ferroelectric for temperature T < Tc. Let x denote the
relative displacement of the centres of the positive and negative ions in the crystal during a
particular mode of vibration. If Fy be the free energy of the unpolarized crystal, the free
energy of the polarized crystal F isafunction of the even powersof x. That is,

F-Fo= do X2+ da X* + o X+ . . .. (1.4.20)
The constants ¢ are functions of al other displacements and given by their thermal average
values. They are thus functions of temperature. Since the electric polarization P is

proportional to the displacement x, we have

F-Fo= %7»sz+ %MP‘H %k6P6+ e (1.4.21)

The constants A are the functions of temperature. The numerical factors are introduced to
facilitate calculations.

Consider first the paraglectric phase of the crystdl, i.e., for T>Tc. If asmall electric
field E is applied in the absence of any external pressure, the following thermodynamic
relation holds good :

dF=-SdT + EdP (1.4.22)

where S represents the entropy of the crystal.

13
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For smaller E, P will also be smaller, and hence we retain only the first term in
(1.4.21) neglecting al; and hence other termsin the first approximation. Then, using (1.4.22)

we have

E= (a—Fj = AP (1.4.23)
oP ).

The electric susceptibility yp in the paraelectric phase is given by

1= 8_0(0'_'5) = e [from (1.4.23)] (1.4.24)

using the Curie-Weiss law (1.4.1), we have

T-Tc
C

or A2 =Cy(T-Ty) (1.4.25)

where C1 is another constant.

goh2 =

Relation (1.4.25) shows that A, increases linearly with increase in temperature. Asaresult of
this temperature dependence, A, varies from positive values to negative values as the
temperature islowered from above T to below T..

In the state of thermal equilibrium, the free energy is minimum which requires that

&0
oP ),

Applying this condition to (1.4.21) in the absence of the applied electric fields, we have

AP+ AP+ AP+ . ... =0 (1.4.26)
The spontaneous polarization is bound to satisfy (1.4.26) and
Pho+ AP +AgPs* +....) =0 (1.4.27)

We find that Ps= 0 isaways aroot of (1.4.27). For this solution the free energy has a

2

minimum provided A, is positive (ZTE:%] . However, if Ay, A4 and Ag are al positive and

higher order terms are neglected, the condition (1.4.27) is satisfied only for Ps= 0. Thus, Ps
=0 corresponds to the only minimum of the free energy and the parael ectric phase exists for

the positive sign of A, A4 and Ag,
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When the temperature is lowered through the transition point, A, goes from positive

do negative values while passing through A, = O at the transition point. There are two
interesting situations that are identified in terms of the signs of A, A4 and As. These
characterize two cases of particular interest namely second-order and first-order
transitions.
Second-order Transitions: If the coefficients A4, A, . . . . are dl positive and the value of A,
varies from positive to negative as the temperature is lowered, the free energy changes as
shown in Fig. 1.4.8 (a). Neglecting the terms beyond the second term in (1.4.27) are
negligible, we get

P2 :-ﬁ: Cl(TC _T)

1.4.28
=T 7y (1.4.28)

Hence Ps is a continuous function of temperature and falls continuously to zeroat T = Tc as
shown in Fig. 1.4. 8 (b).

@ (b)
Fig. 1.4.8 Second order transition (a) Free energy as a function of polarization as the
temperature is varied. (b) Temperature dependence of the spontaneous polarization below

the transition temperature T...

It is useful to examine the spontaneously polarized state in terms of the frequency of
normal modes. From the forms of the free energy (1.4.20) and (1.4.21), it follows that
h20r ko= @i %(K)
and hencein view of (1.4.25),
wi?(K) o (T =To) (1.4.29)

15
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where w;(K) is the frequency of the normal mode i (a TO mode). The transition takes place
when wj(k) — 0. This decrease in the mode frequency is called softening. This indicates
that the harmonic restoring forces are becoming very weak, permitting a large displacement
which is limited solely by anharmonic forces. When wi?(k) or A, is small and positive then
the crystal lattice becomes soft and close to instability. Below T, A, is negative and hence
aso wi?(k); which implies that the unpolarized lattice is unstable and the crystal is in the
spontaneously polarized ferroel ectric state.
The heat capacity is given by
Cy = C°T/s (1.4.30)

The heat capacity falls discontinuously to zero at T =Tc (see Fig. 1.4. 9). But there is no
latent heat at the transition. Such atransition is called a second-order transition.

T Te

Fig. 1.4.9 Temperature dependence of specific heat showing
anomaly at a second-order phase transition

The transitions in Rochelle salt, KH3PO, and LiTaO; are some examples of the
second-order transition. The transition to the superconducting state is the most popular
example of thistype of transition.

First-order Transitions

We have seen that when A, is negative and A, is positive, the transition is of the second-order
type. We now consider a situation where .4 is negative and A¢ is positive. Positive values of
\e are considered to restrain the free energy from going to minus infinity. As per expression
(1.4.25), A, varies from positive to negative as the crystal is cooled through the Curie point.

The corresponding free energy curves are shown in Fig. 1.4.10.
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The thermal equilibrium condition, Z—E = 0, in the absence of the applied electric
field gives
AoPs + haPS + AP = 0 (1.4.31)
which impliesthat either Ps=0, or
Ao+ AP+ AgPst =0 (1.4.32)

At T = T, the free energy in the paraglectric state is equal to that in the ferroelectric state,
i.e,

Fo(Te) = F(T¢) (1.4.33)
Using (1.4.34) in (1.4.21), we have

= %MPSZ (To) + %MPS“ (To) + %XGPSG(TC) + (1.4.34) ..

Then using (1.4.32), we get
Ao+ AP (To) + hePs (To) =0 (1.4.35)
Substituting the value of A2 from (1.4.35) in (1.4.34) and solving for P&(T.). We get

i
p2(ry = 3(#a |32 (1.4.36)
4 26) 42,
And with
2
ro=>| 2 (1.4.37)
16( 4,
PXTY) = 'TZ (1.4.38)
6

At the transition point there are two minima of free energy with equal value; oneat Py(T¢) =0
in the paraglectric phase and the other for the value of Pg(T;) given by (1.4.36) in the
ferroelectric phase. Thusthereisajump [see Fig. (1.4.12)] in the value of Ps at T, meaning
thereby that the spontaneous polarization (the order parameter) drops discontinuously to zero
a T = T, when aferroelectric crystal is heated slowly. Such transitions are called the first-

17
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order transitions. The other important property of these transitions is that there is a latent
heat at the transition. A well known example of this type of transition is the upper transition
inaBaTiOz crystal.

Fig. 1.4.10. a) Free energy as afunction of polarisation as the temperature is varied near a
first order phase transition. (b) Fall of the spontaneous polarisation below the transition point

Tcin afirst order phase transition.
1.4.5 Ferroelectric Domains

When a ferroelectric is cooled from the paraglectric phase through the Curie
temperature, the polarized phase may be nucleated at severa points in the crystal. These
nuclei generally differ in the direction of polarization since there may be several equivaent
crystallographic directions in which the spontaneous polarization can occur. In the case of
BaTiOs, the spontaneous polarization may occur along any one of the three edges, giving six
possible directions for the spontaneous polarization. Thus, as the nuclei grow through the
crystal in the ferroelectric crystal in the ferroelectric phase, they form severa regions or
domains differing in their direction of polarization. The vector sum of these polarizations
may not be always big enough to show up macroscopically.

Polarization is accompanied by some distortion of the unit cell and the domain walls
are consequently in a state of strain; but the dimensional changes are relatively small.
Though the domain walls act as interruptions in the regularity of the crystal, they are not
regarded as grain boundaries between different crystals. A domain wall isinstead, treated as
a sub-grain within a single crystal. As soon as a single nucleus of the polarized phase is
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formed, the polarized phase begins to grow much faster in the direction of polarization than
in the transverse directions. Because of this reason the growing domains are usually wedge-
shaped. Thiswasrevealed by optical birefringence studies on BaTiOs.

The ferroelectric domains are regarded as the electrical analogues of the
ferromagnetic domains despite the fact that there are some interesting differences in their
origin and growth. When the electric field is applied on a ferroelectric crystal, the number
and size of domains that are polarized in the field increase. As a result of this effect, upon
thereversal of the field direction a hysteresisin the P versus E curve is observed.

1.4.6 Antiferroelectricity

Similar to ferroelectrics there is another group of solids, which has induced, ordered electric
dipoles below a characteristic temperature but do not show spontaneous bulk polarization. In
these crystals the neighbouring atomic lines are associated with antiparallel polarization
because of which the bulk polarization of the crystal vanishes. Crystals exhibiting this
property are caled antiferroelectric crystas and the property is known as
antiferroelectricity. The structura requirement for the ferroelectrics and antiferroelectric
phases being common, a number of well-known antiferroelectric crystals are found to be
isomorphous with some ferroelectrics. For example, ammonium dihydrogen phosphate
(ADP) isisomorphous with potassium dihydrogen phosphate (KDP).

Perovskite type crystals are known to be susceptible to severa types of deformation
with amost equal energy difference between them. In many of them the coupling through the
oxygen octahedral causes adjacent lines of basic cells to be polarized in opposite directions.
Below a certain temperature the resultant deformation is such that the total energy in the
antiparallel arrangement of adjacent lines of dipoles is lower, when compared separately to
that in state of fully parallel arrangement of dipoles and to that in the state with no induced
dipoles. Lead Zirconate (PbZrOs) is a notable example of these perovskites. It showsto

antiferroelectric phases, one each ferroelectric and paraelectric phases over different
ranges of temperature.

1.4.7 Summary of lesson

The origin of ferroelectric property and classification of various ferroelectric materials have
been discussed in depth. The theory relating to first order and second order transition of
BaTiOs; has also been presented systematicaly. The phenomenon of antiferroelectricity has
also been explained briefly.

19
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148 Key-Terminology

Piezoel ecticity-pyroel ectricity-ferroel ectricity-antiferroel ectricity-polarization  catastrophe-
ferroelectric first-order and second order transitions.

149 Sdf-assessment questions

Explain piezoelectric, pyroelectric and ferroelectric crystals.

Discuss about the representative crystal types of ferroelectrics.

1

2

3. Explain the ferroelectric properties of Rochelle salt.
4 Explain the ferroelectric properties of BaTiOs.

5

Discuss the ferroelectric transitions in perovskites based on polarization

catastrophe.

6. Discuss the ferroelectric transitions in perovskites based on soft mode
approach.

7. Explain the thermodynamic theory of ferroelectric transition for both second-

order and first-order transitions.
1410 Reference Books

1. Solid State Physics- A.J.Dekker (Macmillan India Limited).
2. Elementsof Solid state Physics- J.P.Srivastava ( Prentice-Hall of India, New Delhi).



UNIT-I
L ESSON -5
PIEZOELECTRICITY

Objective
To discuss the concepts of piezoelectricity and electrostriction in piezoelectric crystals and
also the applications of piezoelectric crystals.
Structure of the lesson

1.5.1.. Introduction

1.5.2 Electrostriction

1.5.3 Applications of piezoelectric crystals
1.5.1 Introduction
Piezoelectricity is the ability of certain dielectric crystals to produce a voltage when
subjected to mechanical stress. The word is derived from the Greek piezein, which means to
squeeze or press. The effect is reversible; piezoelectric crystals, subject to an externally
applied voltage, can change shape by a smal amount. The effect is of the order of
nanometres, but nevertheless finds useful applications such as the production and detection
of sound, generation of high voltages, electronic frequency generation, and ultra fine
focusing of optical assemblies.
History

Pyroelectricity, the ability of certain mineral crystals to generate electrical charge
when heated, was known of as early as the 18th century, and was named by David Brewster
in 1824. In 1880, Pierre Curie and Jacques Curie brothers predicted and demonstrated
piezoelectricity using tinfoil, glue, wire, magnets, and a jeweler's saw. They showed that
crystals of tourmaline, quartz, topaz, cane sugar, and Rochelle sat generate electrica
polarization from mechanical stress. Quartz and Rochelle sat exhibited the most

piezoelectricity. Twenty natural crystal classes exhibit direct piezoelectricity.

Converse piezoelectricity was mathematically deduced from fundamental
thermodynamic principles by Lippmann in 1881. The Curies immediately confirmed the
existence of the "converse effect,” and went on to obtain quantitative proof of the complete

reversibility of electro-elasto-mechanical deformationsin piezoelectric crystals.



M.Sc. Physics 2 Piezoelectricity

Piezoglectric materials

In addition to the materials listed above, many other materids exhibit the
piezoelectric effect, including quartz analogue crystals like berlinite (AIPO,) and gallium
orthophosphate (GaPQO,), ceramics with perovskite or tungsten-bronze structures (BaTiOs,
KNbOs3, LiNbO3, LiTa0s, BiFeOs, NaxWOs, BazNaNbsOs, Pb,KNbsO;s5). Polymer materials
like rubber, wool, hair, wood fiber, and silk exhibit piezoelectricity to some extent. The
polymer polyvinylidene fluoride, (-CH,-CF,-)n, exhibits piezoelectricity several times larger
than quartz. Bone exhibits some piezoelectric properties. it has been hypothesized that thisis

part of the mechanism of bone remodelling in response to stress.

M echanism of piezoelectricity

In a piezoelectric crystal, the positive and negative electrical charges are separated,
but symmetrically distributed, so that the crystal overal is electricaly neutral. When a stress
is applied, this symmetry is disturbed, and the charge asymmetry generates avoltage. A 1 cm
cube of quartz with 500 Ibf (2 kN) of correctly applied force upon it, can produce 12,500 V
of electricity.

Piezoelectric materials adso show the opposite effect, caled converse
piezoelectricity, where application of an electrical field creates mechanical stress (distortion)
in the crystal. Because the charges inside the crystal are separated, the applied voltage affects
different points within the crystal differently, resulting in the distortion. The bending forces
generated by converse piezoelectricity are extremely high, of the order of tens of mega
newtons, and usually cannot be constrained. The only reason the force is usually not noticed

is because it causes a displacement of the order of afew nanometres.

Requirements for a crystal to show piezoelectric behaviour were discussed in the
previous Lesson. We showed earlier that al ferroelectrics are piezoelectrics and that its
converse is not true. For example, quartz is piezoelectric but it does not possess the

ferroelectric property.

The foremost condition for a crystal to piezoelectric is the absence of the centre of
symmetry. Figure 1.5.1(a) shows the array of a simple two-dimensional ionic crystal with no

centre of symmetry. It is evident that a compressive force F [Fig. 1.5.1(b)] decreases the
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electric dipole moment (hence the polarization) and a tensile force F [Fig. 1.5.1(c)] increases
the same. This is essentially the piezoelectric effect. We must appreciate that the displayed
crystal [Fig. 11.14(a)] could well be aferroelectric crystal.
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Fig. 1.5.1(a) A two-dimensional ionic crystal with no centre of symmetry. (b) Compression
under the action of force F decreases the polarization. (¢) Extension of structure under the
action of force F increases the polarization

Next we take up another example to show how the symmetry of a non-
centrosymmetric crystal controls firstly the magnitude and direction of polarization when the
crystal is stressed and secondly the crystal dimensions when the crystal is polarized.

Consider a molecule of hypothetical ionic solid which at equilibrium has three
electric dipoles of equal magnitude distributed over 360° at an interval of 120°. The
molecules belong to the point group 3m and its net dipole moment is zero. But if the
molecule together with the crystal is stressed or compressed along a direction parallel or
antiparallel to one of the three directions of the dipole moment, a net dipole moment would
appear [see Fig. 1.5.2(b) and (c)]. Similarly, a molecule may be distorted by an electric field
applied along one of the three arrows shown in the Fig. 1.5.2(a). The electric field produces
an elongation or contraction of the crystal along the field direction and a length change of
opposite sign in the lateral direction. An applied field that is perpendicular to one of the three
dipole directionsin Fig. 1.5.2(a) finds itself perpendicular to amirror plane of symmetry and,

therefore, isrendered ineffective in changing the crystal dimensions.
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Because of lack of centre of symmetry and complex structure of piezoelectrics, their
electrical behaviour under strain or strain behaviour under an electric field is not isotropic in
nature. Nevertheless, a simple picture of the phenomena can be presented in a schematic one-
dimensional notation by the following equations:

P=cd+gEy; e=oc s+Ed (1.5.2)
where P is the polarization, ¢ the stress, d the piezoelectric strain constant, gy the permittivity
of free space, E the electrical field, y the dielectric susceptibility, e the strain and s the
elastic compliance constant.

Inreal crystals, however, the tensile, compressional or shear strains produced by an
electrical field may develop in different directions and depend on the crystal orientation and
the field direction in view of this fact the piezoelectric strain constants, that form athird rank

tensor, are defined as

wherei=Xx,y, z and k = xx, Yy, zz, Xy, yz, ZX
A
/ A\‘
P P
P=0
(@ (b) (©

Fig. 1.5.2 Response of a piezoelectric molecule to strain: (a) Directions of polarization (in accordance
with symmetry) in a molecule within an undistorted crystal in the state of equilibrium.

The net polarization of the moleculesis zero. (b) A vertical tension or a horizontal compression causing
anet polarization. (c) A vertical compression or a horizontal tension causing a net polarization
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Depending on the application and the desired behaviour, a crystal is cut so as to have
the parallel faces of the crystal in a specific orientation. An X-cut is defined as a section cut
from the crystal such that the x-axis of the crystal is perpendicular to parallel crystal faces.
In order to obtain certain desirable properties the crystals are sometimes given oblique cut

that is cut at anglesis different from 90 degrees with the principal axes.
1.5.2 Electrostriction

It is appropriate to discuss a more universal phenomenon of deformation in crystals
that is caused by an applied electrical field. It refers to the deformation in ionic crystals and
the effect is commonly known electrostriction.

Electrostriction is a property of al electrical non-conductors, or dielectrics that
produces a relatively slight change of shape, or mechanical deformation, under the
application of an electric field. Reversal of the electric field does not reverse the direction of
the deformation.

In the first approximation the deformation of piezoelectric crystal is proportiona to
applied electrical field and the stress induced polarization varies linearly with the strain
produced. But in ionic crystals, which do not have to be necessarily piezoelectrics, the strain
is much smaller and proportional to the square of electrical field. We can understand the
origin of eectrostriction by appreciating that dipoles created by the applied electrical field
would interact with each other. The inline dipoles attract each other with a repulsive poles
acting perpendicular to the direction of the polarization.

Let p denote the moment of a dipole and r the separation between two inline dipoles.
The value of the electric field caused by adipole at its in-line neighbour may be written as
1 2p

E= 3
Are 1

(15.2)

The energy of adipolein the field U(r) and the corresponding attractive force F are related as

F=. du (r)
dr
and Ur)=-p.E
Theserelations yield
2
F=-_1 0P (15.3)
dre, 1

Similarly, we can find that the repulsive force is given by
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2
F=_1 3P (1.5.4)
dre,
Since p = aE, the attractive force can be expressed as
1 (6a?
F=- ( . j E? (1.5.5)
dre,\ 1

To afirst approximation the strain or deformation u may be assumed to follow the
Hooke's law and then

_F
k

where k isthe usual force constant in the direction of the in-line dipoles.

u=

Using the expression (1.5.5) in the above relation, we get

U=+ (G“ZJEZ (15.6)

4re ,\ kr?

Thus, there will occur a compression in the field direction and an extension perpendicular to
the field direction. The above treatment holds for permanent dipoles as well on account of
the effective dipole moment being proportiona to the electric field.

1.5.3 Applications of piezoelectric crystals

It may be recalled all ferroelectrics are piezoelectrics, though the conversion is not
true. As aresult, ferroelectric materials have been frequently used in many applications that

are based on the principle of piezoelectricity. But, because of importance of properties such

as mechanica and thermal strength the use of certain piezoelectric crystals becomes
inevitable.

Piezoelectric crystals are used in numerous ways.

High-voltage sources

Direct piezoelectricity of some substances like quartz, as mentioned above, can generate
thousands of volts (known as high-voltage differentials).

o Probably the best-known application is the electric cigarette lighter: pressing the
button squeezes an piezoelectric crystal, and the high voltage thus produced ignites
the gas as the current jumps over a small spark gap. The portable electrical sparkers

used to light gas grills or stoves work the same way.
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A similar idea being researched by the Defense Advanced Research Projects
Agency (DARPA) inthe USA in aproject called Energy Harvesting, which includes
an attempt to power battlefield equipment by piezoelectric generators embedded in
soldiers boots.

A piezodlectric transformer is atype of AC voltage multiplier. Unlike a conventiona
transformer, which uses magnetic coupling between input and output, the
piezoel ectric transformer uses acoustic coupling. An input voltage is applied across a
short length of a bar of piezoceramic material such as PZT, creating an aternating
stress in the bar by the inverse piezoelectric effect and causing the whole bar to
vibrate. The vibration frequency is chosen to be the resonant frequency of the block,
typically in the 100 kilohertz to 1 megahertz range. A higher output voltage is then
generated across another section of the bar by the piezoelectric effect. Step-up ratios
of more than 1000:1 have been demonstrated. An extra feature of this transformer is
that, by operating it above its resonant frequency, it can be made to appear as an
inductive load, which is useful in circuits that require a controlled soft start.

Sensors

To detect sound, e.g. piezoelectric microphones (sound waves bend the piezoelectric
material, creating a changing voltage) and piezoelectric pickups for eectricaly
amplified guitars.

Piezoel ectric oscillators are used to convert mechanical pulses into electrical ones and
vice versa. The crystal in these devices works as a transducer. The acoustic pulses are
used in underwater search (sonars) and other applications. The acoustic pulses are
generated by the piezoelectric transducers excited by electrical fields in amost all
search cases. The generation of ultrasonic waves is invariably accomplished by

exploiting the above principle.

Piezoelectric microbalances are used as very sensitive chemical and biological
Sensors.

The piezoelectric effect in synthetic poly vinyliden fluoride (PVF,) is about five times
stronger than that in quartz. Being flexible and easy to handle like ultrasonic
transducers, the PVF; films are frequently used in applications such as monitoring

blood pressure and respiration.
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Piezoelectric elements are used in electronic drum pads to detect the impact of the

drummer's sticks.

Actuators

As very high voltages correspond to only tiny changes in the width of the crystal, this width

can be changed with better-than-micrometer precision, making piezo crystals the most

important tool for positioning objects with extreme accuracy.

Loudspeaker: Voltages are converted to mechanical movement of a piezoelectric

polymer film.

Piezoelectric elements can be used in laser mirror alignment, where their ability to
move a large mass (the mirror mount) over microscopic distances is exploited to
electronically align some laser mirrors. By precisely controlling the distance between
mirrors, the laser electronics can accurately maintain optical conditions inside the

laser cavity to optimize the beam output.

A related application is the acousto-optic modulator, a device that vibrates a mirror to
give the light reflected off it a Doppler shift. This is useful for fine-tuning a laser's
frequency.

Atomic force microscopes and scanning tunneling microscopes employ converse

piezoel ectricity to keep the sensing needle close to the probe.

Frequency standards

Quartz clocks employ atuning fork made from quartz that uses a combination of both
direct and converse piezoelectricity to generate a regularly timed series of electrical
pulses that is used to mark time. The quartz crystal (like any elastic material) has a
precisely defined natural frequency (caused by its shape and size) at which it prefers
to oscillate, and thisis used to stabilize the frequency of a periodic voltage applied to
the crystal.

The same principleis critical in all radio transmitters and receivers, and in computers
where it creates a clock pulse. Both of these usually use a frequency multiplier to

reach the megahertz and gigahertz ranges.
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Crystals shaped to have a prescribed mechanical resonance frequency are used as
narrow band electrical filters. Only those electrical signas whose frequency is
coincidence with the mechanical vibrational frequency pass through the crystal and

all other are rejected.

The piezodectric materials are used as delay lines. When an electrical signal is
converted into an acoustic one to one and of a quartz rod. The signal passes aong rod
as an acoustic wave, travelling at velocity of sound. At the other end acoustic may
converted into an electrica signal. The initial signa is thus delayed. Such an

arrangement is often used in communication devices.

Piezoelectric motors

154

Types of piezoelectric motor include the well-known travelling-wave motor used for
auto-focus in reflex cameras, inchworm motors for linear motion, and rectangular
four-quadrant motors with high power density (2.5 watt/cm3) and speed ranging from
10 nm/s to 800 mm/s. All these motors work on the same principle. Driven by dual
orthogonal vibration modes with a phase shift of 90°, the contact point between two
surfaces vibrates in an elliptica path, producing a frictional force between the
surfaces. Usually, one surface is fixed causing the other to move. In most
piezoelectric motors the piezoelectric crystal is excited by a sine wave signa at the
resonant frequency of the motor. Using the resonance effect, a much lower voltage

can be used to produce a high vibration amplitude.

SUMMARY OF LESSON

Piezoelectricity is the ability of certain dielectric crystals to produce a voltage when

subjected to mechanical stress.

Pierre Curie and Jacques Curie brothers predicted and demonstrated piezoel ectricity
in 1880. They showed that crystals of tourmaline, quartz, topaz, cane sugar, and
Rochelle salt generate electrical polarization from mechanical stress.

Piezoelectric materials a so show the opposite effect, called converse piezoel ectricity,
where application of an electrical field creates mechanica stress (distortion) in the
crystal.
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The foremost condition for a crystal to piezoelectric is the absence of the centre of

symmetry.

Depending on the application and the desired behaviour, a crystal is cut so asto have
the parallel faces of the crystal in a specific orientation. An X-cut is defined as a
section cut from the crystal such that the x-axis of the crystal is perpendicular to

parallel crystal faces.

Electrostriction is a property of all dielectrics that produces a relatively slight change
of shape, or mechanica deformation, under the application of an electric field.

Reversal of the dectric field does not reverse the direction of the deformation.

The compression will occur in the field direction and an extension perpendicular to
the field direction.

Piezoelectric crystals are used in high-voltage sources, sensors, actuators, frequency

standards, piezoelectric motors etc.,

KEY TERMINOLOGY

Piezoelectricity-converse  piezoel ectricity-electrostriction-applications of  piezoelectric

crystal.

1.5.6 SELF-ASSESSMENT QUESTIONS

(i)

(i1)

(iii)

(iv)

15.7

What is piezoelectricity? Explain the mechanism involved in the occurrence of
piezoelectricity.

Express piezoelectric strain constants in form of tensor and explain the terms
involved.

What is electrostriction? Obtain an expression for the relation between strain and
electric field produced in piezoelectric effect.

Discuss various applications of piezoelectric crystals.

Refer ence Books

1. Solid State Physics- A.J.Dekker (Macmillan India Limited).
2. Elements of Solid state Physics- J.P.Srivastava ( Prentice-Hall of India, New Delhi).



Unit —11

Lesson -1
IMPERFECTIONSIN CRYSTALS |
POINT DEFECTS
Objectives

To give the classification of defects, to discuss in detail point defects and to estimate the
concentration of point defectsin metallic and ionic crystals.
Structure of thelesson
2.1.1 Introduction
2.1.2 Point Defects
a) Vacancies
b) Intertitial atoms
c) Colour centres
d) Substitutional impurity atoms
€) Excitons
2.1.3 Lattice defects and configurational entropy
2.1.4. Estimation of concentration of vacancies
a)In metallic crystals
b. Inionic crystals
2.1.1 Introduction
Any deviation in a crystal from perfect periodic structure is caled an imperfection or a
defect. Examples of such defect are vacant lattice sites, interstitial atoms, pairs of vacancies
impurities, colour centres etc. A point defect is localized near an atom in a structure in contrast
to the line or plane imperfections. Plane imperfections on the other hand may occur in the initia
stages of the formation of a new crystal structure. Real crystals are imperfect in one way or the
other and the physical properties of the solids are infact controlled by these imperfections. For
example the colour of the crystal arises from imperfections. Similarly the luminescence,
conductivity of the crystal is always dependent on the impurity. The mechanical and plastic
properties are usualy controlled by imperfections. This lesson deals with point defects and its
related aspects.
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2.1.2 Point Defects
Vacant lattice sites, interstitial atoms, pairs of vacancies impurities, colour centres etc.
are some of the examples of point defects.
f) Vacancies
A normal lattice site from where an atom is missing is known as Schottky defect or a

vacancy( Fig2.1.1).

Fig: 2.1.1 A plane of a pure akali halide crystal, showing a vacant negative positive ion site, a

vacant negative ion site, and a coupled pair of vacant sites of opposite sign.

b) Interstitial atom
An atom located at a position different from the normal lattice is known as an interstitial
or Frenkel defect( Fig 2.1.2)
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Fig. 2.1.2 Schottky and Frenkel defects in an ionic crystal. The
arrows indicate the displacement of theions. In a Schottky defect
the ion is moved to the surface of the crystal; in a Frenkel defect

C. Colour Centres
When a crystal (especialy the alkali halides like KCI, NaCl etc. ) isexposed to ionizing

radiations like rays or y —rays or by introducing certain chemical impurities or by heating the
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crystal in excess metallic vapour, the crystal gets coloured. The colour center absorbs visible
light unlike avacancy. Generally the most popular colour centres are F-centres when an electron

istrapped at the negative ion vacancy thistype of colour centres are formed

Fig 2.1.3 An F-center is a negative ion vacancy with one excess electron bound at the
vacancy. The distribution of the excess electron is largely on the positive metal ions adjacent
to the vacant | attice site.

D. Substitutional impurity atom

The presence of aforeign atom in the lattice it may be present at any interstitial position or any
substitution position that isin place of any regular lattice site. In the latter case it is assumed to
have the same valence shell configuration as that of the atom which is replaced. Sometimes these
impurity atoms are essential for the use of the crystals in practical applications. For example
Al;03 mixed with Cr,0O3 ( Ruby ) is used for the production of laser beam. Similarly, when a
crystal like lithium fluoride mixed with manganese is used in radiation dosimetry. The following

isthe figure of substitution of NiO in MgO single crystal.
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Fig. 2.1.4. MgO single crystal doped with asmall concentration of NiO

E. Excitons:

When a photon of energy greater than the energy of energy gap of the crystal are absorbed the
electron will jump from vaence band to conduction band. In this case the holes and electrons are
free to move independently through the crystal. However if the photon energy is less than the
energy gap the electron and hole will have the Coulomb interaction and are bound together as
shown in the Fig. 2.1.5. A bound electron —hole pair connected in this way is known an
exciton. It moves through the crystal transporting excitation energy, but not charge. It isaneutral

mobile entity.

Fig.2.1.5 :Anillustration of exciton, abound electron- hole pair

2.1.3 L attice defectsand configurational entropy
According to thermodynamics, the equilibrium of a solid a temperature ‘T’ is

determined by the minimum value of freeenergy F=E-TS
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We shall see below that this condition necessarily leads to the existence on a certain
amount of disorder in the lattice a al temperatures above
T>0K

The simplest examples of lattice disorder are vacant lattice sites and interstitial atoms.
The latter are atoms occupying positions in the lattice which in the perfect lattice would be
unoccupied. Therma and configurational entropy’s are denoted as Sy, and Si. According to
Boltzmann relation the thermal entropy can be defined as

Sh=KlogWe, L (2.1.1)

Wi, stands for the number of different ways in which the energy of vibrations may be distributed
over the 3N harmonic oscillators.

Sh=3NK [1+log(KT/hv)] . (2.1.2)

The configurational entropy of acrystal has nothing to do with the distribution energy . It
is determined solely by the number of different ways (W) in which the atoms may be arranged
over the available no of lattice sites. For example a lattice containing ‘Na atoms of type ‘A’
and ‘Ny’ atoms of type ‘B’ and assume that lattice sites are equivalent in the sense that a given
lattice site may be occupied by A (or) B.

_ (N, +N,)!

ch W ......... (213)
The Configurationa energy is given by
S = K log Wt
|
—Klog NAENL (2.1.4)
NalN,!

For a perfect crystal containing identical atoms and in the absence of any lattice defects.
W =1 and S = 0 because thereis only one possibility of arrangement of atoms.

The total entropy occurring in the usua thermodynamic formulas is equal to the sum of
the thermal and configurational entropies

SSn+S (2.1.5)

The reason for the existence of |attice defects at any temperature T > 0.
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2.1.4. Estimation of concentration of vacancies
a. In metallic crystals

Suppose in a perfect crystal we produce a certain number of vacant lattice sites by
transferring the atoms from the interior of the crystal to the surface. This will require a certain
amount of energy. i.e. E increases. Consequently F increases and this by itsdf is thus
unfavourable in the thermodynamic sense. On the other hand the creation of vacancies increases
the disorder in the crystal and thus increases the configurational entropy from zero to certain
value determined by the number of vacancies produced.

The configurational energy associated with the possible arrangements of N atoms and n
vacancies over atotal of (N+n) lattice sitesis

(N +n)!
NIn!

It has been assumed for simplicity that the thermal energy is independent of n/N . The

St =K log

equilibrium corresponds to the minimum value of F at temperature T .

Consider a perfect lattice containing N similar atoms at atemperature T the free energy

E

Fig: 2.1.6 Schematic representation of the energy and the configurational entropy term as lattice
sites n/N.
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of this crystal is denoted by Foertect(T). SUppoSe we create n vacant lattice sites. Let the energy
required to create one vacancy be ¢, . We assume that ¢, isindependent of n . We assume that
no two vacancies are nearest neighbours of each other. The free energy of imperfect crystal is
then increased by n ¢, relative to that of the perfect crystal. Configurational entropy is also
associated with the imperfect crysta , furthermore we assume that thermal entropy increases per
vacancy by an amount AS,

The free energy of actual crystal is,

Fo= Forns TS KT 1og | (21

Where'S;' isthe thermal energy of actual crystal.

Under the equilibrium condition

oF
| = (217
(anl ° &40
(ﬁj =y — TASH—KT i[(N+n)|og(N+n)— NlogN -nlogn] =0
on ), ot

by — T A Sp—KT %[Hlog(N +n)—1-logn] =0

or ¢ —TASn+ KT [mg(Nin)} =0 .. (2.1.8)

or [mg(Nin)}: -y /KT+ A SWK

sinceN >> n, [Iog(%)} = -y /KT+ A SyK

= nN=g /KTt (2.1.9)
In general a change in the therma entropy is negligible in this case , hence equation 2.1.5
becomes

KT

nN=e*™ ormp=Ne ™™ o (2.1.10)

For metals ¢, isof the order of 1 electron volt.
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b.Inioniccrystsals

Crystal lattice in thermal equilibrium contains a certain number of lattice defects. lonic crystal
composition may be written as A* B . Positive ion vacancies are produced

by a number of successive jumps of positive ions. The result would be equivalent to taking a
positive ion some where from the interior of the crystal and placing it at the surface. Suppose
that a number of positive ion vacancies would have been produced in this manner, while the
negative ion lattice remains perfect. The surface of the crystal then contains an excess positive
charge, the interior an excess of negative charge. Thus space charges would be set up. These
space charges oppose the formation of more positive ion vacancies.

On the other hand the field setup by the space charges would be favour to the formation
of negative ion vacancy. Hence in order to build up space charges and ionic crysta should
contain equal number of negative and positive ion vacancies.

If $" energy require producing a positive ion vacancy and ¢ is energy require producing
anegative ion vacancy.

Thetotal energy ¢ =" +¢ ... (2.1.11)

The free energy of aperfect crystal is

FR=E-TS L (2.1.12)

Fp is the sum of binding energy as well as vibrational energy. The entropy is thermal entropy

only for a perfect crystal, the configurationa entropy vanishes.

Let acrystal containsn* and n"ion vacancies.

Then the configurationa energy is

2
Si=KlogWg =K log {M} ..... (2.1.13)
NIn

The free energy of actual crystal is,

Fa= Fo+né -T(Sa-Sp)-2KT log [%} -(21.14)

Where ‘Sa isthethermal energy of actual crystal.

Asy is resulting from the production of +ve ion vacancy by
NASh=Sa—S .....(2.1.15)
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Under the equilibrium condition

(&),
on );

(ﬁj =9 —TASn—2KT i[(N+n)|og(N+n)—NIogN—nIogn] =0
on J; aor

©—TASp—2KT 8iT[1+|og(N +n)—1-logn] =0

or

0-TASh= 2KT [Iog( n )} .(2.1.16)
N+n

The experimental term containing the change in thermal entropy per vacancy ASy / 2
may be calculated on the basisof Einstein model.
Let ‘v’ isthe frequency of theion neighbouring avacancy in actual cystd ( v'<v)
Then the actual crystal contains a 6zn no of linear harmonic oscillators of frequency v’
and (6n- 6zn ) no of linear harmonic oscillators of frequency v where z is the number of the
nearest of neighbours surrounding a vacancy then the thermal entropy of perfect and actual
crystal are

S;= K log op = 6NK Iog(E—Tj+6Nk (2.1.17)

v

S2=62ZnK Iog(?j +(6N-62Zn) K {Iog(r]T
v

\%

ﬂu ...(2.1.18)

From the equations 2.1.7 and 2.1.8
Sa=Sp+62ZnK |og(i,j . n(2.1.19)
v

or A Sh=62ZnK Iog(ilj .....(2.1.20)
v

1%
Hence n= N e -@/2KT e3NZ log (;j

WN=Ce " "t ....(2.1.21)

v
Interstitial ions are combination with vacancies aso occur for example a positive ion may jump

3NZ
where C = (Lj

into an interstitial positions, leaving a vacancy behind. If the vacancy and interfacial ion are far

enough, a part to prevent an immediate recombination known as Frenkel defects. Inthiscaseitis
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not necessary to have equal number of positive and negative Frankel defects, because their
formation does not require the setting up of a space charges over macroscopic distances. Their
calculation of their density as a function of energy required to produce a Frankel defect is
especially the same as that given above Schotty defects. i.e. one finds an expression for the free
energy of acrystal containing n defects and minimizes F.
We are neglecting thermal entropy changesin this case.
n=(NN;)/2e? KT ...(2.1.22)
Where N is number of ions under consideration. N; isthe number of possible interstitial
positionsin the crystal. ¢ isthe energy required to produce a Frenkel defect.
2.15 Summary of thelesson
Brief classification of various defect in crystals has been presented. The connection
between the configurationa entropy and the defect in crystals has also been discussed. Equation
for the concentration of vacancies both in metalic and ionic crystals has been derived.
2.1.6 Key Terminology
Point defects — Vacancies — Interstitid atoms — Colour centres — Excitons Configurational
entropy .
2.1.7 Sdf — Assessment questions
1. Givean account of the classification of various point defectsin crystals.
2. Discuss the connection between the configurational entropy and lattice defects.
3. Derive the expressions for the concentration of vacanciesin metallic and ionic crystals.
2.1.8 Reference Books:
1. Elementsof Solid State Physics— J.P.Srivastava ( PHI, New Delhi, 2003)
2. Introduction to Solid state Physics — C.Kittel ( Wiley Eastern, New Delhi, 2003)
3. Solid state Physical Electronics - Aldert van der Ziet ( Prentice —Hall of India, New
Delhi, 1971)
4. Solid State Physics— A. J.Dekker ( Macmillan , Madras, 1986)
5. Indroductionto Solids - Leonid V.Azaroff ( Tata McGraw-Hill Publishing Co.,
Bombay , 1978)



Unit - 11

L esson - 2
IMPERFECTIONSIN CRYSTALS-II
LINE AND PLANAR DEFECTS
Objectives

To discuss in detail the Line defects like Edge and screw dislocations and the two
dimensional defects such as planar defects an to explain the role of dislocations in the crystal
growth.

Structure of thelesson
2.2.1. Introduction
2.2.2. Line Defects
a. Edgedidocation
b. Screw dislocation
c. Plane Defects ( Grain boundaries)
2.2.3. Stressfields of dislocations
2.2.4. Dislocations and crystal growth

2.2.1. Introduction

Line defect is another type of defect comes under one dimensional defect. The example
of this defect is dislocation. In this a part of lattice undergoes a shearing strain equa to one
lattice vector called a Burger's vector. There are two types of dislocations known as edge
dislocation and screw dislocation and any general dislocation is a combination of both. In this
chapter the formation and structure of these defects have been discussed. Description of the two
dimensional or the planar defects like grain boundaries has also been presented in this chapter.
2.2.2. Line Defects

a. Edgedislocation

It occurs when the periodicity of the atomic lattice array is interrupted along certain
directions in a crystal. Such dislocations occur along the rows of a crystal structure and so are
called line defects. An edge dislocation is formed by missing of row of atoms or when a row of

atomsis displaced ( see the figures below).
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Fig 2.2.1. An edge dislocation EF in the glide plane ABCD. The figure shows the slipped
region ABEF in which the atoms have been displaced by more than half alattice constant
and the unslipped region FECD with displacement less than half alattice constant.

Fig 2.2.2. Structure of an angle dislocation. The deformation may be thought of as
caused by inserting an extra plane of atoms on the upper half of the y axis. Atoms in the

upper half-crystal are compressed by the insertion; those in the lower half are extended.

"

Fig 2.2.3. Motion of a dislocation under a shear tending to move the upper surface of the

specimen to the right.
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The vector representing the lattice displacement is called Burger’s vector denoted by ‘b’. In the
edge dislocation the Burger’ s vector is perpendicular to the dislocation line.

b. Screw dislocation

The formation of a screw dislocation can be understood as follows: cut a perfect crystal partway
through, then force the material on one side of the cut to move up with respect to the material.
On other side by one unit of atomic spacing and finally glue the material on the two sidesin this
condition. The dislocation marks the boundary between the displaced and un-displaced parts of
the crystal. The Burger's vector is again used to describe the displacement. It is a type of
dislocation in which the dislocation ling(Burger’s Vector) isparalé to the slip direction.

Fig 2.2.4. A screw dislocation. A part ABEF of the slip plane has slipped in the direction
paralel to the dislocation line EF.

Fig. 2.2.5. Another view of a screw dislocation. The broken vertical line which marksthe
dislocation is surrounded by strained material.

c. Plane Defects ( Grain boundaries)
These defects have an extension in an area and are confined to a small region. It is a boundary
between two adjacent perfect regions in the same crystal which are slightly tilted with respect to

each other or it may also be understood as a junction of two single crystals aong a common
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planar surface. These imperfections are common in poly crystalline materials which contain a
large number of crystals. Thetwo common examples of grain boundaries aretilt and twist grain
boundaries. The first one is aresult of a linear a sequence of edge dislocations where as the

second one is result of a sequence of screw dislocations. The genera grain boundaries (low
angle grain boundaries) are the mixture of these two.

 eEmmuuBEEE

2
’i;-ll==llll

Fig 2.2.6. A view of typical low angle grain boundary

2.2.3. STRESSFIELDS OF DISLOCATIONS
The properties of the dislocations are in general determined by the stress fields they produce
inside the material. The caculations of these fields is usually carried out with the assumption

that the medium isisotropic and characterized by shear modulus G and poisonsratio v

Consider acylindrical crystal that has been sheared in the axial direction (Z axis). The shearing
is as shown in Fig. 2.2.7. Suppose we produce a cut in the plane Y=0 which extended between
the axis and the outer surface. Let the material above the cut dlip to the left by an amount ‘b’

leading to the configuration as shown by the dotted line. We thus have produced a positive edge
dislocation along the Z axis a burgers vector along the X axis.
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Fig 2.2.7. An edge dislocation along the z-axisin acylindrical piece of material.

The plane Y=0 is the dip plane. In terms of the coordinates r and 0 the stress filed of the

dislocation line may be shown to be given by the following tensile and shear stresses

Gb .
= =———~sno 2.2.1
Orr — Opp (1_v) ( )
Gb
=ty= —F/—= COs6 L 222
Tre Ter (1_V) ( )

Where

o = radial compression or tension

cep = Compression or tension acting in a plane perpendicular to r

Trg = Shear stress acting in radial direction
On the basis of these results the energy formation of dislocation, of unit length can be
shown to be equal to

J' Gb? Gb?

2rr(l- v " dr(l-v) log(Rir)) (2.2.3)

Where R isthe radius of the piece of materid.

For a screw dislocation along the Z axis in a cylindrical piece of material, the stress

field is completely given by a shear stress:

T=Te,=Gb2nr . 2.2.4)
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2.2.4. Didlocations and crystal growth

Consider the growth of a crystal by hanging a small piece of crystal in avopour of same
kind of atoms. In some cases, it was observed that the dislocations are a controlling factor in
crystal growth. When crystals are grown in conditions of low super saturation, of the order of 1
percent, it has been observed that the growth rate is enormously faster than that calculated for an
ideal crystal. The actual growth rate is explained by Frank. It terms of the effect of dislocations
on growth.

The theory of growth of ideal crystals predicts that in crystal growth from vapour a super
saturation ( pressure / equilibrium vapor pressure) of the order of 10 is required to nucleate new
crystals, of the order of 5 to form liquid drops, and of 1.5 to form a two dimensional mono layer
of molecules on the face of a perfect crystal. However there is a large disagreement
between the growth rate and experimental growth rate. This is because of the presence of screw
dislocations during the growth of the crystals. The crystal will grow in spiral fashion at the edge
of the discontinuity as shown in Fig. 2.2.8. The calculated growth rates of this mechanism arein
good agreements with observations. We expect that nearly al crystals in nature grown at low

super saturation will contain dislocations, as otherwise they could not have grown.

Fig 2.2.8. Theintersection of a screw dislocation with afree surface to produce a spiral step.

Spiral growth patterns have been observed on a large number of crystals. A beautiful
example of the growth pattern from a single screw didocationis given in Fig 2.2.8.

If the growth rate is independent of direction of the edge in the plane of the surface, the
growth pattern isan Archimedes spiral,

r=ao,
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where a is a constant . The limiting minimum radius of curvature near the dislocation is
determined by the super saturation if the radius of curvature is too small, atoms on the curved
edge evaporate until the equilibrium curvature is attained.

Away from the origin each part of the step acquires new atoms at a constant rate, so that dr/dt =
Constant.

2.2.5. Stacking faults.

Consider acrystal. Let the n™ layer of it is aclosest packingisan A layer and the (n + 1)™ layer
is supposed to be a B layer ( See the Fig. 2.2.x ) but because of a "mistake" in the stacking
sequence it isa C layer instead. It is said that a stacking fault has been introduced between the

n"and (n+1)" layer in that case. For example, consider the stacking sequences

... ABABABCBCBC... ..ABCABCBCABCA .. (21)

...hhhhhchhhhh... ...ccccecchheccecccecc...

In the first case, a stacking fault has occurred on one side of the c layer. (The choice of the side
is based on which sequence is deemed to be the correct one.) In the second case, the stacking
fault clearly lies between the two h layers.

The stacking fault can be produced by at least two distinct mechanisms. When a closest
packing of atoms forms in a crystal during its growth, it is possible for a new layer to start

incorrectly;

Fig. 2.2.9. Formation of stacking faults
That is, a C layer can start to grow instead of the B layer required by the preceding stacking
sequence. If the crystal grows sufficiently rapidly, this so-called growth fault is incorporated in

thefinal crystal. Similarly, it is possible to displace the atoms in, say, a B layer to the sitesof aC
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layer during plastic deformation of the crystal. (This actually takes place by the relative motion
of the two parts of the crystal.) The energy of a stacking fault, therefore, can be calculated by
taking into account the interactions between next-nearest neighbors only. (The contribution due
to next-next-nearest neighbors is small so that it can be neglected.) The measured values of this

energy are 19 ergs/cm? in copper and between 100 to 200 ergs/cm? in aluminum.

It is also possible to describe the production of deformation faults in terms of
dislocations. Consider the hexagonal closest-packed layer, say the A layer shown in Fig. 2.2.9.
Suppose that the next layer above is a B layer. It can be displaced along the Burgers vector Sto
produce a unit f dislocation. Actually, it is much easier to displace the layer to the , neighboring
C sites. Remember, the nearest-neighbor forces acting on : each atom are not affected by this
change.) When such a partial dislocation is formed in a closest packing, a stacking fault is
produced. It is evident that the atoms probably move in a zigzag path so that it is not surprising
that stacking faults have been found to exist in plastically deformed face-centered cubic metals.

2.25 Summary of lesson

The formation of screw and edge dislocations has been discussed. The role played by
dislocations in the crystal growth has aso been described. The geometrical structure of the grain
boundaries in the crystals has also been presented. The brief summary of the general defectsin

the crystalsis given below
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Type of imperfection Description of imperfection
Interstitial Extraaom in an interstitial site
Point defects
Schottky defects Atom missing from correct site
Frenkel defect Atom displaced to interstitial site creating
nearby
Edge dislocation Row of atoms marking edge of a
crystallographic plane extending only part
Line defects way in crystal
Screw dislocation Row of atoms about which a normal

crystallographic plane appears to spiral

Lineage boundary Boundary between two adjacent perfect

regions in the same crystal that are dightly
tilted with respect to each other

Plane defects Grain boundary Boundary between two crystalsin a

polycrystallinc solid

Stacking fault Boundary between two parts of a closest
packing having alternate stacking

sequences.

2.2.6 Key Terminology

Line defects - Edge did ocation — Screw dislocation —Grain boundaries — Stress fields
2.2.7 Self —assessment questions

Discuss briefly the formation of edge and screw dislocations

Write anote on planar defects.
Derive the expression for ht stressfiled of dislocations.

A WD

Discuss therole dislocations in the crystal growth
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2.2.8 Reference Books:

1. Elementsof Solid State Physics— J.P.Srivastava ( PHI, New Delhi, 2003)

2. Introduction to Solid state Physics — C.Kittel ( Wiley Eastern, New Delhi, 2003)

3. Solid state Physical Electronics - Aldert van der Ziet ( Prentice —Hall of India, New
Delhi, 1971)

4. Solid State Physics— A. J.Dekker ( Macmillan , Madras, 1986)

5. Introductionto Solids - Leonid V.Azaroff ( Tata McGraw-Hill Publishing Co.,
Bombay , 1978)



Unit- 2
Lesson —3
MAGNETIC PROPERTIES- DIA MAGNETISM
Objective of the lesson
This chapter is aimed to make the student familiar with certain fundamentals related to magnetic
properties of the materials. Further it is also planned to discuss the general quantum theory of
magnetic susceptibility and also of diamagnetism in particular.
Structure of thelesson
2.3.1. Introduction
2.3.2 Measurement of susceptibility
2.3.3. Atomic magnetic moment
2.3.4. Quantum theory of magnetic susceptibility
2.3.5. Diamagnetism

2.3.1 Introduction

The permanent atomic magnetism (paramagnetism) cannot be accounted for without
restricting the circulating electrons to the discrete stationary orbits as required in the
Bohr's quantum theoretical model of the Hydrogen atom. In the classical picture, there
can be no magnetic moment associated with the current of circulating electrons because
electrons in accelerated motion would radiate and finally fall on the nucleus, causing the
atomic structure to collapse. Hence the magnetism is essentialy a quantum effect. The two
fundamental forms of magnetism, Diamagnetism and paramagnetism have their origin in
induced and permanent magnetic moments respectively. Diamagnetism, where the applied
magnetic field is pushed out of the system, can be appreciated similarly by realizing that
the discrete quantum states occupied by electrons are stable to a certain extent only
against external perturbations, like a magnetic field in the present case. Paramagnetism
can be accounted for with restricting the circulating electrons to the discrete stationary orbits as
mentioned in Bohr’ s guantum mechanica atomic model of hydrogen atom.

We define below the certain fundamental physical quantities that concern the

magnetic properties of materials. In vacuum, the intensity of the applied magnetic field H and
the magnetic induction B are related by the equation.
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B=uH (23.1)

Where 1, isthe permeability of free space (u, = 47 x107" V S/A m.)
The magnetic state of a system is specified by its magnetization M, defined as the
magnetic moment per unit volume. M isrelated to B and H by
B=pu, (H+M) ... (2.3.2)
For convenience in discussions it is a practice to introduce an external induction such that
B, = u,H
Mostly , thereisalinear relationship between B, and M given by u,M = yB,

Giving M- (2.3.3)

Where y is caIIéBd’the magnetic susceptibility.

Substances with a negative magnetic susceptibility are called diamagnetic substances with a
positive susceptibility are called paramagnetic.

2.3.2 Measurement of susceptibility
The magnetic contribution to the energy density of a magnetized specimen is % yH?,

provided y is independent of H. The force on a unit volume is the gradient of the energy
density. The x- component of the force on asmall specimen of volume V is

1 d dH
F ==9V—H?=yVH|—| ... 2.34
<2 ax X (dxj (234

provided the field H and the derivative dH / dx do not vary appreciably over the volume (this
why the specimen must be smdl). Given below is the method known as Gouy’s method to

measure the magnetic susceptibility of a paramagnetic substance.
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Analytical balance
———with one pan
removed

L]

=

Tube containing specimen

Electromagnet

R

Fig 2.3.1. Measurement of magnetic susceptibility by Gouy’s method

In this method (Fig. 2.3.1.) along cylindrical sample is suspended halfway into a strong
field H: one end of the sample is in the maximum field and the other end is in a region where

the field is negligible. The total force under these conditions on a specimen of cross — sectional

area A is
1 d 1
F ==yAldx—H?*==yAH’=Amg ... 235
= Aok HT =Ty g (2:35)
= y =2Amg/AH’emu ... (2.3.6)

where Amg is the weight loss of the sample in the presence of magnetic field H. By measuring
Amg and H, the applied field one can calculate the susceptibility .
2.3.3. Atomic magnetic moment

Suppose an eectron is orbiting with an angular frequency « in an atom of radius r then
according to amperes law the moment L, of the current loop is given by, area of the loop x
current . This can be shown as

w=- (e2m) (rxp)
= - (e/2m) x orbital angular momentum
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here e is the charge of the electron, m is the mass of the electron and p is the linear momentum.

When the atom is subjected to an external magnetic field, the orbital motion or the orbital
frequency of the electron and as a result its magnetic moment will be affected as shown in the
Fig.2.3.2. If an electron from an atom which satisfies the Bohr's quantization condition
possesses angular momentum L then its magnetic moment is defined as

W = —(ﬂJI T (2.3.7)
2m

Fig. 2.3.2. Effect of the magnetic field (B,) on the magnetic moment of the electron.

where p, isthe Bohr Magneton = 1, = (?j =09.2742x 10 JTm....... (2.3.8)
m

Similarly the magnetic moment due to the spin motion of the electron is represented by

us and it is expressed as
Us=-OotgS (2.3.9

where g, is called the electron g- factor whose value is given by 2.0023 for a free electron and s
is the spin quantum number which is equal to £1/2.

For the calculation of magnetic moment of an atom or an ion which contains more than one
electron, , we combine the vectorially, the individua orbital and spin angular momenta either by
L-S coupling or by j-j coupling. By taking
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nL=ny ¢, and 7 S=n). s ,onecanhavethetotal angular momentum, as

hi=nL+nsS (2.3.10)

where J is the total quantum number. Then the total magnetic moment u;isrelatedtoJ as

My = pg(L+GS) =g ug J
with L+0S=9J (2.3.11)
where g is called Landes splitting factor for L-S (or Russel — Sanders) coupling the value
of gisgiven by

J2ys2 2
142 = 23.12
g 277 ( )

with 3" =/j(j+1) , L' =/¢(/+1) and S" =./s(s+1)
If we take the value of g, as 2.0000 instead of 2.0023 the magnetic moment u may be expressed

as

po=—ug (L2 (2.3.13)

2.3.4. Quantum theory of magnetic susceptibility
Magnetization or the intensity of magnetization of a quantum mechanical system having
N magnetic ions per unit volume at T=0 is defined as
M= —n&H (2.3.14)
oH
Where Eo(H) istheionic ground state energy in the presence of thefield H.
In the state of thermal equilibrium at T, the thermal average of each excited state of

energy E,(H) gives the measure of magnetization, i.e.

>M, ex E” }
M(T)= =& =T e (2.3.15)
Zed i
- KT
where M= —N %, (H)
oH
Thermodynamically the intensity of magnetization is defined as
M= —-N o+ (2.3.16)

oH
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Where F is the magnetic Helmholtz free energy.
The genera definition of susceptibility gives
0°F

oH?

xX= HO@ = —pN— (2.3.17)
oH

But, in most of the cases, M is found to be very accurately linear in H for attainable field

strengths. In such a case, the definition of y reducesto

i = HOF:VI .......... (2.3.18)

A guantum mechanical approach of the magnetic susceptibility is discussed below.
The part of the Hamiltonian operator of the energy of an atomic dipole in a magnetic

field H owing to its orbital magnetic moment . is

AH =-w .H=psL.H ... (2.3.193)
AHs=-ps.H =psS.H ... (2.3.19h)
where, S;= ) s, with s, = %ai (o, isaPauli spin matrix )

It is assumed here that the magnetic field is applied aong the z- direction. In the presence of a
magnetic filed, the linear momentum of an electron is given by
Piga =pteAr) L (2.3.20)

where P is the liner momentum of the electron in the absence of the fiedld and A denotes the

vector potential related to H as, H = curl A with div A=0.
For ahomogeneous field, a possible choice of avector potential is
= -%rXH .......... (2.3.21)

A aresult, we can write the kinetic energy part of the Hamiltonian as

1 e 2
Hin = —> | p—=r, x H
ki 2mi(p' 2" ]
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2
=To+ugL.H+ 8e—HZZ(xi2+yi2) .......... (2.3.22)
m i
where Ty is the kinetic energy in the absence of thefieldand #L= Z ri X pi

Combining the spin term ( 2.3.19b ) with (2.3.22) , we get the total interaction
Hamiltonian as

AH = pg(L + go,S). H + % ’ ZZ(XiZ Ly T (2.3.23)
Changes in energy affected by ( 2.3.23) even with the strongest magnetic fields that can be
produced in alaboratory are very small on the scale of atomic excitation energies. Hence it may
be justified to follow the ordinary perturbation approach for calculating the changes in electron
energies induced by a magnetic field.

The dependence of susceptibility on the second derivative of energy ( 2.3.18) indicated
that it would be sufficient to confine the perturbation calculations to second order terms. If
energy E, changes be AE,, on applying the field, this change according to the standard result of

the second order perturbation theory is expressed as

¢, |AH | ) [
AE, = (¢, |AH|¢,) T Z< |E E > — (2.3.24)

where ¢, denotes the egen function of the nth energy state.

On Substituting AH from (2.3.23) and retaining terms up to those in quadratic in H, we obtain

BolteH.(L+ 9,9 |6y ) |

AE, = ugH. (¢, |L+gos|¢n>+z‘< | E _E. >|
e’ 2 2 2

* gt <¢HZ(>g FYOP) e (2.3.25)

This relation serves as the basis for the description of magnetic susceptibility of
individual atoms, ions or molecules. It can aso applied to ionic and molecular solids by
computing the susceptibility ion by ion, provided the concerned solid may be regarded as a
collection of only slightly deformed ions.
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2.3.5. Diamagnetism
Consider the case of a solid composed of ions whose al electronic shells are filled. An ion has

zero spin and orbital angular momentum in its ground state represented by the wave function ¢,,
i.e
Jéo)=Ldp)=Y¢) =0 .. (2.3.26)

In relation (2.3.25), only the last term contributes to the field-induced shift in the ground state

energy

AEy = 8e_mH2<¢O|iZ(XiZ+yi2)|¢O>

12m WXrl) e (2.3.27)

In the state of thermal equilibrium ions are generally in their ground state, excepting the situation
at high temperatures. Therefore, the susceptibility of a solid with N atoms or ions per unit
volume at room temperatureis given as

0°AE,

- TN

. ﬂ%'\rf GXrd) e (2.3.28)

If there are Z electronsin an ion, the mean square radius of theion may be defined by

(@6]2-17| o)

(r*)= T .......... (2.3.29)
Thisleadsto
Mo Nze? <I’ 2>

.......... 2.3.30
o (2:3.30)

which issame as obtained on the basis of purely classical considerations.
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2.3.6  Summary of the lesson
Certain fundamental quantities related to magnetic properties of the materias has been
discussed. A brief description of the experiment to measure the magnetic susceptibility has been
given. The general quantum theory of magnetic susceptibility has been discussed in depth. The
expression for diamagnetic susceptibility on the basis of quantum theory has also been derived.
2.3.7 Keyterminology

Magnetic moment — Magnetic susceptibility — Quantum theory — Diamagnetism

2.3.8 Sdf assessment questions
1. Define the magnetic susceptibility and describe an experiment to measure the magnetic
susceptibility.
2. Givethe quantum mechanical formulation of magnetic susceptibility
3. Derive the expression for diamagnetic susceptibility by the quantum mechanical
approach.
2.3.9 Reference Books
1. Elements of Solid State Physics — J.P.Srivastava ( PHI, New Delhi, 2003)
2. Introduction to Solid state Physics— C.Kittel ( Wiley Eastern, New Delhi, 2003)
3. Solid State Physics— A. J.Dekker ( Macmillan , Madras, 1986)



Unit-2
Lesson —4.
MAGNETIC PROPERTIES- PARA MAGNETISM

Objective of the lesson

e To discuss the quantum theory of paramagnetism and to derive Curie’'s law
Structure of thelesson
2.4.1. Introduction
2.4.2 Quantum theory of paramagnetism
2.4.3 Susceptibility and Curie’'s law
2.4.4. Application to magneticionsin solids. Effect of the crystal Field

2.4.1 Introduction

According to classical theory the atomic magnets can have any orientation of
electronic orbits with respect to the external magnetic field applied. The number of magnetic
dipoles that posses potential energy U =- u . H are proportional, to exp(-U/KT).
Then the dipole moment of the dipoles along the field directions present within the solid angle

dQ isequal to exp(-U/KT) n cosb dQ . Then the average dipole moment is given by

g HHCIKT 1 Cosh.dQ

O ey

=
I

s

J.e—,uHCOSH/KT do

0

=Cothal/a=L&® .. (2.4.2)

isknown as Langevin’'s function. Here a= uH/KT. Then the total magnetization,
M =Np L(uH/KT).
Aslong as puH/KT << 1, M = Np?H /3KT or 3 = Np? /3K T
= x=¢c/T7 . (24.3)
This is known as Curi€’'s law. However according to the quantum theory the magnetic moment

of agiven atom or ion is not freely rotating but restricted to a finite set of orientation relative to
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the applied field. In this chapter we derive the magnetic susceptibility of the paramagnetic
materials based up on this concept.
2.4.2 Quantum theory of paramagnetism

Consider amedium containing N atoms per unit volume , the total quantum number each
atom being J gives raise to the possible components of the magnetic moment ,
Mg ps Where M= J, (F1), ....... ~31),-J
where M;is the magnetic quantum number associated with J.

Then the number of dipoleswhose P.E. is-M;g ug H are proportiona to

AN oc eMI#eP 5T or N = ce MmeH KT (2.4.4)

Since the magnetic moment associated with each dipole is Mg ug The total magnetic dipole

moment is given by

+J
= ceMe K TgMy L (2.4.5)
-3

Average magnetic dipole moment

_ Total magneticdipole moment

M :
No. of dipoles
+J
B Z eMguBH /KT nguB
M= (2.4.6)

+J
Z engBH /KT
-J

AsT and H are kept constant. Let usassume x = g ugH/KT, then

i MeMX

M=gug—~——— . (2.4.7)

ZeMx
-J
+J
Z MeMX
Eay
e X
2

but

d Mx
= &(nge ) (2.4.8)
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—er—e¥ et e’(z”l)x]

ejx[l_ e—(2]+1)x] ejx _e_(j+1)
B s R P

e—% [e(j+1/ 2)x e(j+1/2)><]

e—xlzlexlz . e—xlzj

e - Snh(j+2/2)x
- Snhx/2 (2.4.9)

> Me™ _dlog{gnr(ju/z)x}

>e™ T dx Sinhx/ 2
Sinhx/ 2 [Slnr(1+1/2)x}

S|nIf(J+1/2)x dx Sinhx/ 2

; ; ; 1. ...
Sinhx/ 2 Sinhx 2( j+1/2)Cosh( j+1/ 2)x—5 Sinh(j +1/2)xCoshx/ 2

T Sinn(j+1/2)x ( hxj
Sm7

ZMeMX hx
=(j+ )COth(j + )x——Cot—
e 2 2

_ T o1 hx
M = — |Cot x——Cot—
Oug (J+2) "(Hz) 5 2}

M = gju{ 2] TLleot)—(j +£jx—i_Cotm(}
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[(2j41) . (2j+1).. 1 . (hix
= ———— |Cot ——Cot| —
%H 2] j F{ 2] j’x 2] [21
2)+1 2j+1 1 a
-q. Coth ——Coth| — ||  ........ 2.4.10
g'“BH 2] jo [ 2] ja T [zj'ﬂ (2:4.10)

Multiply with‘N’ on both sides (where a=jx)

— 2j+1 2j+1 1 a
MN = Ng. Cot a——Coth —
g‘”BH 2] J { 2] J 2] {Zjﬂ
M, =M, ZJJ_rl Cot ZJJ_rl a—i,Cot i_
2] 2] 2j 2]

Where Mo =NJgug is called saturated magnetic dipole moment. Then

M, _(2i+1 Cot 2)+1 a—iCot 2
M, | 2] 2j 2] 2j
M: _B(a)
Mo 7 L (2.4.11)

where

B@) =2 oo 21 o L oo &
2] 2; 21 M 2]

........ (2.4.12)
iscdled Brillioun's function.
Case-| :- If j= wo then
B(a) = Cotha—i_ .ﬂ
2] a
=Cothal/a=L(@  ....... (2.4.13)

Where L(a) is caled Langevin's function. It has been found that equation is good
agreement with experiment result in comparison to the results obtained from classical

equation. Where ‘N’ is No. of atoms in magnet per unit volume.
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Case-1l :- For J=1/2 then B(@) = 2Coth2a-Cotha =Tanha
" M, = Tanha
Mo (2.4.14)

The variation of Brilliouin’s function with H for different values of Jis as shown in Fig 2.4.1

The lowest curve indicates Langevin's curve.

JF12

B(a)

N="")

Fig.2.4.1

The experimental plot of magnetic moment verses H/T for certain materials is shown in Fig
242. As T —0 , the magnetic moment goes to its saturation value which means that the

magnetic diploes will align completely with the field direction .
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b

Magnetic moment (Bohr magnetons/ion)

HIT (kGK™

Fig. 2.4.2. Magnetic moment verses H/T for certain materias | .Potassium
chromium alum, Il Ferric ammonium alum , 111 Gadolinium sulphate octahydrate

2.4.3 Susceptibility and Curie'slaw :

When a<<1 i.e.JX <<1lor JgugH/KT << 1 meansfor low fields or higher temperatures

e -peo{ L (7o
0 J 3j KT

M. = Mo L] 9keH
3] KT

Or

_ NgZi(i+D)
3KT

M. Ng®ugi(j+1)

H 3KT

Ng°ugj(j+1 _ Np?
3K 3K

or the susceptibility y=

=% =CIT ; whereC =

is called as Curie constant .

=y <« CIT

) j+1)gjugH
N - - |=£8
gJ“B[ 3j J KT

........ (2.4.15)

........ (2.4.16)

........ (2.4.17)

ThisisCurie'sLaw. i.e. If temperature decreases y increases.
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In the equation 2.4.11 p=0 ug+/j(j+1)) ... (2.4.18)

is known as the effective magnetic moment .The order of magnitude of the paramagnetic
susceptibility of a solid per cm® may be estimated from (2.4.15). With N~10%* and a dipole
moment of one Bohr magneton , one obtains y~1/300T. At room temperature y ~10 ~ ; at 1°K,
v~107—-10" . These values are of importance in connection with the following question which
may arise in the theory of the dielectric polarization of a solid it was necessary to introduce the
internal electric field ,i.e., the actua field acting on a given atom was represented by sum of the
applied field and the field due to polarization of the surroundings .On the other hand , in the
derivation of magnetic susceptibility above , the field acting on a dipole in a paramagnetic solid
was assumed to be equal to the field H. The justification for this is the following : the order of
magnitude of the internal field is given by H+yM = H(1+yy), where y = 4. Hence the fractional
error made in neglecting the internal field correction is of the order of y. Aswe have seen above
, this small for paramagnetic materials .
The variation of effective magnetic moment for trivalent positive rare earth ions as a function of

number of electrons evaluated using equation 2.4.18 isgivenin Fig 2.4.2

124+
Dy He
10} Th Er
gl
Bon Gd Tu
bost
Yh
4F Pr Md EIM
2t foe an
0 - A i M L " i M i 1 L Cp.
55 80 65
—-*z

Fig 2.4.3 Variation of effective magnetic moment for trivalent positive rare earth ions as a

function of number of eectrons
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2.4.4 Application to magneticionsin solids. Effect of the crystal Field

Insulating solids containing rare earth ions obey the Curie law very well. The p-vaues
(the effective Bohr Magneton numbers , equation 2.4.18) are derived from the coefficient of

1T inusing the measured values of y . These are in exceedingly good agreement with those

calculated with for al rare earth ions excepting samarium and europium. For both of these ions
the Jmultiple lying just above the ground state is very close in energy as a consequence of
which a couple of assumptions made in the derivation of the Curie law remain no morevalid :

1. The second term is ignored in the derivation of the Curie law

becomes important because the denominators ( E, - E ;) are now very small.

2. Thereis an appreciable probability of thermally exciting some ions from the state(s) of lowest
Jto higher states, contrary to what is assumes for deriving the Curie law.

These observations explain the discrepancy noticed in respect of samarium and europium
ions. Thus these observations lead to the conclusion that the rare earth ions can be treated as
free ions even in solids. Effective magnetic moments for the trivalent lanthanide group ions are
givenin Table 2.4.1.

Table 2.4.1.Effective magnetic moments for the trivalent lanthanide group ions

lon Configuration Basic level P=0 ks W])) p (exp)
Ce™ 4f' 5°p° *Fy 2.54 2.4
pré 4f2 5°p° *H, 3.58 35
Nd* 4 5°p° o2 3.62 35
Pm* 4% 5°p° °l, 2.68 -

Sm** 4f° 5%p° ®Hg), 0.84 15
Eu® 4f° 5%p° Fo 0 34
Gd** 4f" 5%p° 8 7.94 8.0
Th3+ 4f8 5%p° Fe 9.72 9.5
Dy* 4f° 5%p® ®H .5, 10.63 10.6
Ho* 410 5%p® °lg 10.60 10.4
Er** 4" 5%p® 152 9.59 9.5
Tm* 4f'? 5g%p® *He 7.57 7.3

Yb** 4f*2 5%p® o 4.54 4.5
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3d transition metal ions (theiron group). In the case of 3d transition metal ions, athough the
Curie law is obeyed, the experimental p-values are not accounted for by equation 2.4.13. The
agreement is close only if Jisreplaced by S in therelation, assuming that L is zero though S
will be still given by the Hund's rules. This phenomenon is known as quenching of the orbital
angular momentum and attributed to the crystal field effect. The crystal field effect is stronger
in transition metal ions since their partialy filled d-shell (3d in the iron group) happens to be the
outermost shell. The electrons in the d-shell are thus directly exposed to the electric field
created by ions surrounding the magnetic ion of concern. The coupling between L and S is
largely broken so that the states are no longer specified by their J values. Further, the (2L + 1)
sublevels belonging to a certain L and degenerate in the free ion may be split by the crystal field.
The splitting decreases the contribution of the orbital motion to the magnetic moment.

Table 2.4.2 . Effective magnetic moments for theiron group ions

lon Configuration  Basiclevel p=g :UB\/WD) p=g /’tB\/ﬁ)) p (exp)
Ti¥* v¥ ad’ "Dy, 1.55 1.73 1.8
v 3d? °F, 1.63 2.83 2.8
cr¥ v* 3d° “Fap 0.77 3.87 38
Mn®,Cr? 3d’ Do 0 4.90 49
Fe** Mn?* 3d® °sy), 5.92 5.92 5.9
Fe?* 3d° °D, 6.70 4.90 5.4
Co** 3d’ *For 6.63 3.87 4.8
NiZ* 3d® °F, 5.59 2.83 32
cu** 3d° Dy, 3.55 1.73 1.9

On the other hand, the crystal field effect for rare earth is aimost negligible since their
partialy-filled shell (4f) liesdeep inside theion, sheltered by 5s and 5p shells. Thisexplains

why these ions behave as almost free ions even when they are embedded in crystals.
245 Summary

The difference between classical and quantum theory of paramagnetism have been
discussed. Based upon the quantum theory the expression for magnetic susceptibility of
paramagnet material has been derived. The paramagnetic properties of the materials containing

rare earth ions and transition metal ions have aso been discussed briefly.
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2.4.6 Keyterminology
Quantum Theory — Paramagnetism — Magnetic Susceptibility —Curie’'s Law— Crystal
Field.

2.4.7 Seaf assessment Questions
1. Mention the differences between classical and quantum theory of paramagnetism
2. Discuss the quantum theory of paramagnetism. Derive Curi€'s law for paramagnetic
material.
3. Discuss briefly the effect of crystal field on paramagnetic properties of solids.

2.4.8 Reference Books:
1. Elementsof Solid State Physics— J.P.Srivastava ( PHI, New Delhi, 2003)
2. Introduction to Solid state Physics — C.Kittel ( Wiley Eastern, New Delhi, 2003)
3. Solid State Physics— A. J.Dekker ( Macmillan , Madras, 1986)



Unit - 11
Lesson 5
TYPES OF PARAMAGNETISM

Objective of the lesson

This chapter is amed to discuss different contributions to the paramagnetism. It is aso

discussing with theory behind the method of cooling by adiabatic demagnetization.
Structureof thelesson

2.5.1 Introduction
2.5.2 van Vleck paramagnetism
2.5.3. Nuclear paramagnetism

2.5.4. Cooling by adiabatic demagnetization
2.5.1 Introduction

This chapter is aimed to discuss various types of paramagnetisms like vanVleck, Nuclear
paramagnetism etc. More specifically the paramagnetic properties the material that contains the
atoms of partialy filled shells with J=0 have been discussed. The contribution to the
paramagnetism from the nucleus magnetic moments has aso been explained. Further the
attainment of very low temperatures by the method of adiabatic demagnetization has also been

described.
2.5.2 van Vleck paramagnetism

Consider the case of a partially-filled shell with J =0, giving a non-degenerate ground
state. It isthe case of ions whose partially-filled shell is one electron short of being half filled.

In afilled shell too, J=0. But the present case is different in the sense that the second termin
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2.3.25 does not vanish here, though it does so for ions having only completely occupies shell,
simply because L and S are both independently zero for a completely filled shell. Hence the

shift in the ground state energy induced by the magnetic filed in the present case is written as

GoltieH (L +9,S),|”

¢o> —ZK ........... (2.5.1)

En_EO

&2
AE, = am H 2<¢o Zi:)(iz +y!

If the system has N such ions per unit volume,

O°AE,
=—-u,N— 252
X Ho aBé ( )
= e’ 2 2 2 ‘<¢°‘(LZ * gosz)‘§0“> i 253
uON{4m<¢OZ(X +yi)¢o>_2ﬂszn: E —E, ( )

In the above equation the first term with negative sign represents the diamagnetic susceptibility.
The second term is an evidence for the paramagnetism it may be regarded as a correction to the
diamagnetic contribution. The paramagnetic term is required to be examined in two extreme
limits.

1. En-Eo<<KT

In this limit , the excess population in the ground state over the excited state of energy E =

N(Eq-Eo )/2KT
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Thisgivesraiseto

=NE 5 gL, + 0S|

N
and %= “O“B 2 [(gol(L. + 0os. o)

Here y isindependent of the separation of excited states from the ground state .
2. En-Eo>>KT

In this case dl theions stay in the ground state. Then the magnetization

2
L, +9,S
M=2NH u2 > ORIy I (2.5.6)
n En - EO
) (Bo|(L. + 8oSlen )|
and X = 2Npu p? Z ........... (2.5.7)
n En - EO

This expression indicates the paramagnetic susceptibility is independent of temperature and
commonly known asvan Vleck paramagnetism
2.5.3.Nuclear Paramagnetism
In addition to the orbital motion and the spin of electrons, the nuclear spin also
contributes to the magnetic moment of atoms. The nuclear magnetic moment is expressed in
units of the nuclear Magneton in analogy with the Bohr defined by

_en
Hy oM

=5051x10%"J/T .. (2.5.8)

P
where Mpis the Proton mass.
Comparing with the 2.5.8 with 2.3.8 we see that the nuclear magneton is smaller than

the Bohr magneton in the ratio of the Proton mass to the electron mass ( ~10%).
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Therefore, the static nuclear paramagnetism is masked by the electron paramagnetism in
paramagnetic substances. Solid hydrogen shows nuclear paramagnetism, though its electron
configuration suggests diamagnetism only. The value of Proton magnetic moment is verified by
these measurements. Heavy nuclel are found to possess even smaller magnetic moments. The
method of nuclear magnetic resonance (NMR) is used to determine the nuclear magnetic
moments. The nuclear magnetic moments, being very small compared to the electronic
components, are aimost ignored while discussing static magnetization. A comparative view of

various forms of paramagnetism and diamagnetism are shownin Fig.2.5.1

Langevin paramagnetism

____________________________ van Vleck paramagnetism
-——————-——————--- Pauli Paramagnetism

> T
"""""""""""""""" Landau diamagnetism

“«— o —»

_____________ Larmor diamagnetism

Fig. 2.5.1. A comparative view of various forms of para
magnetism and diamagnetism, giving y versus T plot.

2.5.4. Cooling by adiabatic demagnetization

For cooling below 1K, normally adiabatic demagnetization method is used. the selection of an
appropriate system is not easy because at these low temperatures there is hardly any entropy left

in any system. There may be only some solids suitable for the purpose. The
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lattice entropy of a solid, at 1 K with 8, =100K it is merely ~ 10" N Ksg. ( Kg- Boltzmann's

constant) Hence this method is suitable only for paramagnetic solids which possess appreciable
spin entropy. The underline principle is to apply magnetic field to reduce the entropy of
paramagnetic salt immersed in liquid helium. The creation of a more ordered state of spins leads
to the reduction of entropy. The liquid helium absorbs any head liberated in the process. The
sdt is then removed from the liquid helium bath and the magnetic field is switched on under
adiabatic conditions implying that the entropy remains unchanged. The field is switched off
slowly to ensure that the system passes through states always in thermal equilibrium. The
temperature will have to fal if the entropy is to remain unchanged even after the magnetic field
is completely withdrawn. In order to preserve the cooling thus produced, no heat should flow
into the spin system. The most likely source of heat is the lattice entropy. Therefore, it is most
important that the lattice entropy of the salt be smaller than its spin entropy to disallow heating.
Salts containing rare earth elements because of their larger magnetic moments adequately satisfy
the above condition and, therefore, used for adiabatic demagnetization.

Consider an entirely disordered spin system at high temperatures where the thermal
disorder overpowers magnetic interactions that could produce any preferential spin orientations.
A spin system of N ions, each of spin J, has (2J + 1) statesin total over which the spins are
distributed. If W represents the number of possible ways of distribution in a quantized spin
system, theentropy S of the systemisdefined by

S=KInW
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Therefore, W = (2J+1)N
Showing that the entropy is temperature independent in the absence of a magnetic field.

For J=%%, the entropy isequal to NK In 2. It showsthat even for atwo-level system, the
spin entropy is far greater than the lattice entropy around 1 K (~10“Nkg). On the application of
amagnetic filed H, the (2J + 1) states are separated in energy is lowered when the lower levels
gain in population. When the magnetic field is withdrawn adiabatically, the temperature falls so
that the entropy may remain unchanged as required in an adiabatic change. A theoretica basis
for this phenomenon is discussed below.

The entropy is defined in terms of the Helmholtz free energy F and theinternal energy U as

s:% =KBU-F) e, (2.5.9)

with B= L/KT. Further, we learn from relation that for a system of non-interacting paramagnetic

ions, SF depends on H only though the product SH . his requires F to be of the form

F =% FBH) e, (2.5.10)

Where f(pH) denotesafunction of the product (pH)

Since U can be expressed as

0

U=—
op

(BF) (25.11)

The expression for entropy can now be written using 2.5.9 as

oF
S: Kﬂz%
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or  using2510, S=K|-f(BH)+pHIY(BH)| o.o..... (2.5.12)

Thisrelation indicates that S, also dependents on the product fH . Thus, if S isconstant, H

also remains constant. = H/T is aso constant. Hence

(H )Initial — (H )Final

TI nitial TFi nal
H).
Tfinal = M X-I-initial .......... (2.5.13)
(H ) Initial

Instead of switching off thefield, if we decreaseit adiabatically to a certain value,
according to 2.5.13, then, Tfina < Tinitia
The lowest possible temperature can be determined by the equation 2.5.12. In principle,
we could even reach the absolute zero, if this relation is absolutely valid. Had it been true, the
zero field entropy would not have been found to be temperature dependent as shown in Fig.

252.

5 s(H)=0 according: |
Y to simple theory
S i | A

Actual

stH=0

Fig. 2.5.2. Plot of entropy versus temperature cooling curves for interacting spins at various
values of external induction Bo in an adiabatic demagnetization process.



Solid State Physics 8 Types of Paramagnetism

The observed temperature dependence leads to the conclusion that the entropy will really drop to
zero as the absolute zero is approached, a result that is consistent with the third law of
thermodynamics. Therefore, the condition must fail a small fields to account for the
temperature dependence of the zero-field entropy. In fact, even after the magnetic field is
completely withdrawn there remains a magnetic field, though weak, mainly contributed by
magnetic interactions between paramagnetic ions. This field in some cases may be as large as
100 gauss around 1 K.

When this aspect and other effects, such as strong crystal field splittings at low temperatures, are
taken into consideration, the temperature dependence in question is properly explained using the
resultant modified expression for entropy.

The process of cooling by adiabatic demagnetization is explained in Fig 2.5.2. with the
help of S versus T curves for different magnetic fields. Initially, the paramagnetic salt rests
immersed in liquid helium. Thevertical line AB represents the first step of operation where the
entropy is isothermally reduced from itsinitial valueat A to alower value at B by applying a
magnetic field B, . Notice that the point A lies on the zero-field S versus T curve and the point
B on a curve obtained in the presence of the field B4. There are other curves for fields lowers

thanB,-B,>B,>B,. The Sversus T behaviour in the absence of a magnetic field as

predicted by simple theory and as observed as shown by two separate curves.
In the next step, the salt is removed from the liquid helium bath and the field reduced
under adiabatic conditions (but slowly) through Bs, B,, B; . . . . to zero value. The operation is

represented by the horizontal line BC. Theintersection of BC with
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various S versus T curves gives the temperature T3 > T, > T; corresponding to the fields B,

B, & B; at three different stages during the process of adiabatic demagnetization. The lowest
temperature approached is shown as T; symbolized by the point C on the observed zero-field
curve. As mentioned earlier, the lowest temperatures produced by adiabatic demagnetization are

intherage of 10°K.

255 Summary of thelesson

Different contributions to the paramagnetism like van Vlek paramagnetism, nuclear
paramagnetism etc., have been discussed. The theory behind in cooling the material by adiabatic

demagnetization has aso been included.

25.6 Keyterminology

van Vlek paramagnetism- Nuclear paramagnetism — Adiabatic demagnetization-

2.5.7 Sdf assessment questions

1. Discussthe concept of van Valek paramagnetism.
2. Explain the nuclear contribution to the paramagnetism.
3. Givethetheory on cooling of the materials by adiabatic demagnetization

2.5.8 Reference Books

1. Elementsof Solid State Physics— J.P.Srivastava ( PHI, New Delhi, 2003)
2. Introduction to Solid state Physics— C.Kittel ( Wiley Eastern, New Delhi, 2003)
3. Solid State Physics— A. J.Dekker ( Macmillan , Madras, 1986).



UNIT -3
LESSON -1

FERROMAGNETISM

Objective of the lesson

The objective of this lesson is to discuss the properties of ferromagnetic materias based on the
guantum mechanical theory. It is aso intended to interpret the phenomenon of ferromagnetism
on the basis of the concept of domains.

Structureof thelesson

3.1.1. Introduction

3.1.2. Weiss theory of Ferromagnetism

3.1.3. Relationship between saturation magnetization and temperature

3.1.4. Ferromagnetic Domains

3.1.1. Introduction

Iron, cobalt, nickel and their dloys are well known Ferromagnetic materials since along
time. These materials exhibit hysteris loop. The susceptibility of these materials obeys Curie-
Weiss law. i.e. y = ¢/T-0. Above the Curie temperature 6 these materias act as paramagnets.
Ferromagnetic specimens in general contain a number of small regions called domains which are
spontaneously polarized. There exists a molecular filed within each domain and filed leads to
produce parallel alignment of individual localized atomic moments. Based on these points, Weiss
developed a formulafor susceptibility of ferromagnetic materials.
3.1.2. Weiss theory of Ferromagnetism

In order to explain the relation between Para and Ferro magnets as well as to
account for the specia features of Ferromagnetics, Weiss gave his molecular theory.

Weiss theory is centered about the following two hypotheses.
1. A ferromagnetic specimen contains a number of small regions called “domain” which are
spontaneously magneti zed.
2. With in each domain, the spontaneous magnetization is due to the existence of interna
molecular field, which tends to produce a parallel aignment of the atomic dipoles. The internal

field is proportional to the intensity of magnetization
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H, <M;
orH,=N,M, (311
Mt - Magnetization at the temperature T, Ny, - Waelss constant. If H is external magnetic

fields, the effective field acting on the ion (or) atom.
from the definition of the susceptibility, ¥ = Mt/H

L hpPub
o My=yH= -PHepy 3.1.2
T=X 3KT ( )

The value of y is substituted from the quantum theory of paramagnetism.
Taking Hets = H+Nw Mt in 3.1.2,.

_np’up
Mr = 3TTB(H +N,Mp (3.1.3)
nu?
=?.|;](H+NWMT)1 where u; = pug
M (1_ nuzNW)_ nu;H
T 3K, 3K,
Therefore volume susceptibility y = M+/H
2 '
_ Ni,s — - C@ .......... (3.1.4)
n —
3K (T - H 3 Nw ) w
3K
isknown as Curie- Weiss Law. In the equ. (3.1.4)
2 2
C,:% andQW:M:C'NW
3K 3K

are called as the Curie constant and Ferro magnetic Curie temperature respectively.
From the paramagnetic theory we have Mt=Mg B(a), where a= g J ugH/KT. In this case
a=gJus (H+Nw M{)/KT. (3.1.5)
Since we are interested in spontaneous magnetization if we keep H=0 ( the applied field) in
3.1.5. we get
M=KTa/gJugNw (3.1.6)
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Since M+t should satisfy the equations Mt=Mg B(a@) and 3.1.6. Its value a a given temperature
can be obtained from the point of intersection of the two corresponding Mt verses “a’ curves as
showninthe Fig. 3.1.1.

M+

Lol T =B -
| ’ L _~"Langevin'scurve

. e

Fig. 3.1.1. Graphical method of finding spontaneous magnetization at atemperature T.

The straight line in Fig. 3.1.1 indicates that the slope is proportional to T. If T<6, anon
vanishing value for spontaneous magnetization exists. For T = 6 the slope of the straight line
represented by the equation. 3.1.6. is equal to tangent of the curve at the origin. If T > 0, the
spontaneous magnetization vanishes. In the Table 3.1.1 the Curie temperature and saturation

magnetization for some of the ferromagnetic substances are presented.
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Table3.1.1.
Substance Saturation magnetization M in gauss Ferromagnetic Curie
Room Temperature 0K temp. in K

Fe 1707 1740 1043
Co 1400 1446 1400

Ni 485 510 631

Gd - 2010 292

Dy - 2920 85
Cu,MnAl 500 (550) 710
MnAs 670 870 318
MnBi 620 680 630
MnyN 183 - 743
MnSh 710 - 587
MnB 152 163 578
CrTe 247 - 339

CrBr3 - - 37
CrO, 515 - 392
MnOFe,0; 410 - 573
FeOFe,03 480 - 858
CoOFe,03 400 - 793
NiOFe,03 270 - 858
CuOFe,03 135 - 728
MgOFe;05 110 - 713
UH; - 230 180

EuO - 1920 69
GdMn, - 215 303
GdsFesOr2 0 605 564

Y sFes0n(Y1G) 130 200 560
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3.1.3. Relationship between saturation magnetization and temper ature

M
At Mt=Ms H=NwMs ,then M_ =B(a) gives

0

Mr_2j+1 W ((2i+1) JgueNuMs) 1 (1 JgusNuMs) (3.17)
M, 2] 2j KT 2j 2] KT
2 +1)JN
But 6, - V5N _ (j +1)iNg®u BN
3K 3K
gug Ny 3. _ 3.

= K (i+DNgus  (j+M

_2j+1 th((2j+1) j30. Mg J 1 (1 j 30, MSJ

. , -—coth
Mo 2] 2j (j+9T M, ) 2] (j+r ™M

Hence

_2j+1 coth (2j+1) _39c Mg -i_coth 1&& ....(3.1.8)
2 2 (j+T M, ) 2j  (2(j+1T M,

Now we shall verify this theoretical formula by practical considerations.
() Ifj=12,

M M Mg
—3 =2coth 29—0—S —coth] == Oc =Tanh e Ms ....(3.1.9)
M, T M, T |\/|O T M,

(i) Ifj =

Ms _oeoth 292 Ms | E(’_M_ ..(3.1.10)
M T M

0

since Coth x = (UX)+(x/3)-...... for j = oo, Cothx ~ (1/x) has been used in (3.1.10).The
variation of M1/M; evaluated using equation 3.1.8 for three different values of j for Fe, Ni , Co,
aregiveninFg 3.1.2
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Fig 3.1.2 Thevariation of M{/M, for three different values of j for Fe, Ni, Co.

Asthe experimental curves for these three metals are coinciding with theoretical curves for j=1/2
.The normal states of free atoms are Fe = D, (j=4) , Co = °Fg (j=9/2) ,Ni= °F,4(j=4) .For none
of these metals J=1/2 .Hence there is a discrepancy between the theory and the experiment. This
discrepancy can however be overcome if take L = 0. Then, J = L+S = 0+1/2 =1/2 . This
indicates the magnetization associated with electron spins rather than orbital motion. This type of
magnetization is known as the orbital quenching.
3.1.4. Ferromagnetic Domains

It is known that a piece ferromagnetic material may exist in the non magnetized state,
whereas a weak magnetic field may produce saturation magnetization in the same specimen. To
explain this Weiss introduced the domain hypothesis. Each domain is spontaneously magnetized.
The overall magnetization is given by the sum of the domain vectors, which may vanish under

certain circumstances.
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Magnetization of a specimen may occur either by the growth of one domain at the
expense of another, i.e. by the motion of domain walls (Fig. 19-6b), or by rotation of domains
(Fig. 19-6¢c). A representative magnetization curve is given in Fig. 19-7, indicating the
predominant processes in the different regions. We may note here that originally it was thought
that the well-known Barkhausen jumps were due to the rotation of a complete domain and that
the size of the Barkhausen discontinuities was a measure of the size of the domains.

However, it was later shown that the Barkhausen jumps are mainly associated with

irregular fluctuations in the motion of the domain walls rather than with domain

H
/ 4 Hard
H _ * direction

e
- B i
LY
T I’
—-—— .
A .
Non-magnetized Wall motion Domain rotation

. g b ;)
rotation.. @) ) ©

Fig.3.1.3. Domain structures.

These are different methods for observing the domains, the main method is known as
Bitter powder pattern method. In this method, a few drops of colloidal suspension of
ferromagnetic material, the particles of the suspension will settle upon the walls of domain of
ferromagnetic materials. These boundaries are clearly seen with the help of powerful

microscope.

(b)

_ _ ) Fe containing 4%Si
Fig 3.1.4.Domain structures observed under a microscope for someiron alloys

(a)
Ni(78%)-Fe(22%) alloy
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On the surface of the specimen; since there are strong local magnetic fields near the domain
boundaries, the particles collect there and the domains can be observed under a microscope.
Domain structures observed under a microscope for someiron alloys are shown in Fig3.1.4.

The ferromagnetic material exhibit hysterics if the external field isincreased up to certain
point A, linearity exists between the magnetization and the applied field (Fig.3.1.5.), if the field
is decreased from the point A, then the curve traces its original path. Up to the point A, it isthe
reversible wall displacement that contributes to the magnetization. If the field is increased
beyond A, the saturation magnetization is achieved and if the field is decreased from the point of
saturation C, the curve no longer traces the origina path and it cuts the Y-axis at a point
indicating the retention of certain magnetization even for H = 0 and that point is known as
retentively. If we want to demagnetize the material completely, the external field is to be
applied in the reverse direction and field is known as coercive field Hc. If thefield isreversed in
this way a cycle will be completed as shown in the Fig.3.1.5. This curve is known as hysterisis

loop. The area under the curve represents the loss of energy during magnetization.

Domain rotation

Irreversible wall displacerments

Feversible wall displacements
—=y

Fig. 3.1.5. Magnetization curve of aferromagnetic substance

The physica origin of domains can be understood from the general thermodynamic
principle that the free energy E -TS of a solid tends to reach a minimum value. As aresult of the
high degree of order in the magnetic system, the entropy term may be neglected. Thus,
minimizing the energy E of the system should be sufficient to understand the existence of

domains. To illustrate this point, consider the cross section of a ferromagnetic single crystal Fig.
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3.1.6.. In Fig. 3.1.6.(8) we have a single domain, i.e., the specimen acquired saturation

magnetization. Because of the free magnetic poles at the ends of the specimen, the expression for
the energy will contain aterm (1/8r) j H 2 dV associated with the field outside the crystal. In Fig.
3.1.6.(b) on the other hand, the field energy is strongly reduced because the spatial extension of
the field is much smaller. There is a certain amount of energy involved in producing a domain

wall. Hence, one ultimately arrives at an equilibrium situation with a number of domains such

that the energy required to produce one more domain boundary is equal to the resulting reduction

e

of thefield energy.
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Figure 3.1.6. The origin of domains.

A domain structure such as in Fig. 3.1.6.(c ) has zero magnetic field energy. This is
achieved by introducing the triangular prism domains at top and bottom of the crystal; such
domains are called closure domains. Note that the wall between a closure domain and a vertical
domain in Fig. 3.1.6.(c), makes an angle of 45° with the magnetization directions in both types
of domains. Hence the normal component of the magnetization in crossing such a wal is
continuous, i.e., there are no free poles and there is no field energy. The energy required to
produce a closure domain is essentially determined by the anisotropy of the crystal, i.e., by the
fact that ferromagnetic materials have "easy" and "hard" directions of magnetization. For
example, from the magnetization curves represented in Fig. 3.1.7 one sees that in iron, which is

cubic, the easy directions of magnetization are the cube edges.
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Fig .3.1.7. Magnetization curves for asingle crystal of iron along different directions of

the crystal axis.

In nickel, which is also cubic, the easy directions of magnetization are the body diagonals. In
cobalt the hexagonal axis of the T crystal is the only preferred direction; thus in a cobalt crystal
with b prominent domains magnetized along the hexagona axis, the closure domans are
necessarily magnetized along a hard direction. In iron and nickdl, on the other hand, it is
possible to have both the closure domains and the dominant domains magnetized aong easy
directions. Summarizing the ideas discussed above we may say that domain structure has its
origin in the principle of minimum energy.

3.1.5 Summary of thelesson

Wiess theory of ferromagnetism has been discussed briefly using quantum mechanical
concepts and Curie- Weiss law for the susceptibility of the ferromagnetic materials has been
derived. Comparison of the theoretical results with the experimental results has aso been
presented. Origin for the spontaneous magnetization has also been discussed using the concept
of domains.

3.1.6 Key Terminology

Wiess theory — Spontaneous magnetization — Hysterisis loop - Domains
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3.1.7 Sef —assessment questions
1. Discuss the Wiess theory of ferromagnetism and arrive at an expression for the
susceptibility of ferromagnetic materials.
2. Discuss the dependence of saturation magnetization on temperature..

3. Write anote on ferromagnetic domains.

3.1.8 Reference Books:
1. Elementsof Solid State Physics — J.P.Srivastava (PHI, New Delhi, 2003)
2. Introduction to Solid state Physics — C.Kittel (Wiley Eastern, New Delhi, 2003)
3. Solid State Physics— A. J.Dekker (Macmillan , Madras, 1986)



Unit -3
Lesson —2
INTERPRETATION OF THE WEISSFIELD AND

THE THEORY OF MAGNONS

Objective of the lesson

To deal with the explanation of the Weiss field-Exchange Interaction
and to discuss spin wave or Magnon theory

Structure of thelesson

3.2.1. Introduction

3.2.2 Theinterpretation of the Weiss field-Exchange Interaction
3.2.3. Theory of Magnons

3.2.3a Dispersion relation for magnons

3.2.3b Quantization of spin waves

3.2.3c Bloch T% Law

3.2.1. Introduction

In 1928 Heisenberg showed that the large molecular field may be explained in terms of
exchange interaction between the electrons. The principle of this explanation has been
illustrated by considering the hydrogen molecule as an example . A part of this chapter deals
with the theory of magnons which means quantized spin waves, these are analogous to lattice
vibrations (or) phonons.

3.2.2 Theinterpretation of the Weiss field-Exchange interaction

In this section we shall discuss Heisenberg's interpretation of Weiss interna field.First of all, a
rough estimate of the required molecular field H,, may be made as follows. The energy of a

given atomic dipole in this field should be of the order u H, ~ K6 .For a Curie temperature

0 ~1000K this gives Hn~ 10’ gausses. From this one concludes immediately that the internal
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field is not due to a simple dipole-dipole interaction between neighbors, because such fields

would be of the order u /a® ~10°gausses.

Heisenberg showed that the large molecular field may be explained in terms of exchange
interaction between the electrons. The principle of this explanation may be illustrated by
considering the hydrogen molecule. Let the two nuclel of hydrogen molecule be denoted by a
and b, the atomic wave functions by y, and vy, and the electrons by 1and 2. The interaction

potential between the two atomsis then given by

v _ez(i+i_i_iJ
-

rab r12 rbl raZ
From the Heitler-London theory of chemical binding one knows that the energy of the systemis

in the form, E = K+ J_.where K is the Coulomb interaction energy and J. is the exchange

integral, given by

i = [Vi vy @Vay, @, @dvidv, (322)

The plus sign in the expression for energy E refers to the nonmagnetic state of the molecule
in which the two electronic spins are anti parallel. The minus sign corresponds to the case in
which the two spins are paraldl, i.e., to the magnetic state .1t is evident from the equation E =
K+ J,. that the magnetic state is stable only if Je is positive, because then (K -Jo) < (K + Jp).

expression for energy E may be written in a more convenient form which contains the relative

orientation of the two spins, viz.,

E=const. -2J. S..S, 0000 ...l (3.2.3

In other words, the exchange energy appears in the total energy as if there is a direct coupling
between the two spins. It must be emphasized, however, that the exchange interaction is
fundamentally electrostatic and that the spin enters into the energy expression as a consequence
of the Pauli Exclusion Principle.

We shall now assume that for two atomsi and j the effective coupling between the spins
due to exchange interaction is equivalent with aterm -2J.S.§ in the energy expression; J isthe
exchange integral for the two atoms. In general, the exchange integral is negative, i.e., in general

the non- ferromagnetic state is favored. However, Jq is likely to be positive when the distance ra



Acharya Nagarjuna University 3 Distance Education

between the nuclel is fairly large compared with the orbital radii of the electrons involved. The

behavior of J. as function of ryisindicated in Fig. 3.2.1.
Je ‘r

/—\ »rab

/

Fig. 3.2.1.Behavior of the exchange integral
Je as function of inter atomic distancery,

According to Slater, the ratio ra/ro where r, is the orbital radius should be larger than 3 for Je
to be positive but not much larger. The ratios ra/ro for some metals are given below.
Fe Co N Cr Mn Gd
rafo 326 364 394 260 294 31

Note that Cr and Mn are not ferromagnetic. One might raise the question here whether an
element with uncompensated spins, which itself is not ferromagnetic because the ra/r, vaue is
not favorable, may be combined with another non ferromagnetic element to form a compound
for which the ry/r, value is suitable for ferromagnetism. That this seems indeed possible, for
example MnAs and MnSb are both ferromagnetic; the lattice constants of these compounds are,
respectively, 2.85 and 2.89 A°, as compared with 2.58 A° for pure Mn. The ferromagnetism of

the other alloys can be explained in asimilar manner.

Because of the importance of the exchange integra, one would like to relate it to the
Weiss constant N,, and to the ferromagnetic Curie temperature. An approximate relationship
between J. and N, can be found as follows. We assume that the exchange integral is negligible
except for nearest neighbors and that its value is J. for al neighboring pairs. We may then write

for the exchange energy of agiven atom i with its neighbors as

V= —2Jez SS., . (3.2.4)

where the summation is taken over to the nearest neighbors of atom i. Replacing the
instantaneous values of the neighboring spins by their time averages that there are z nearest

neighborsto the atom i we get,
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V=-223,(S,(S,)+5,(S,)+S,(S,)) e (3.25)

Assuming that the magnetization M is along the z-direction, we may take
(Sy)=(S,;)=0and (S;)=M/gugN

According to (3.2.4) and (3.2.5.),

V=-27jeS;M/gNpg ..l (3.2.6)
Now, this expression should be equal to the potential energy of spini in the Weissfield N, M,

i.e,
V=-gSiusNyM (3.2.7)

From the equations (3.2.6) and (3.2.7) we obtain

Ny=2zJ/N g?u2 ..., (3.2.8)

From the expression for Curie temperature( 8 3.1.2), we obtain the relation between 6; and Je

as
0:=22J S(StD/3K (3.2.9)

Thus for asimple cubic lattice with z = 6 and with S = %2, one finds
K6 =2/3 (3.2.10)

more exact calculations by Opechowski and P. R. Weiss give, respectively 0.518 and 0.540
for the JJ/K 6 for a simple cubic lattice.

3.2.3. Theory of Magnons

Magnon means quantized spin wave, these are analogous to lattice vibrations (or) Phonons.
Consider i" and |" atomsand S & S are their corresponding spins. Then the

energy of the interaction between two spinsis
u=-2JS.S5, where J, isexchange energy

According to Heisenberg model, at T=0 K we can represent all the spins as parallel

vectors. The spin S:% and lieon asingle line as shown in Fig.3.2.2



Acharya Nagarjuna University 5 Distance Education

RERRARN

Fig.3.2.2 The spins as parallel vectors.

Then the spins interaction energy (if there are ‘'n’ such type of spins) is

N
U=-2])> S,S,;  oeeen (3.2.11)

p=1

S, stands for pth spin and S,.+1 stands (p+1)t spin
If the temperature of the system is increased, due to thermal agitation some of the spins
may be reversed. Now let us consider the situation, if one of the spins is exited, means one of
spinsisin the reverse direction. The reversal of spinis shared by al the other spinsalso. All the
spins but not limited to the neighbouring spin alone. The situation of the spins corresponding to
this state can be pictured asin Fig 3.2.3. The spin vectors moves in the preferred directions
asshownintheFig 3.2.3(a) . The heads of spinsform awave asshownintheFig 3.2.3(b).

Fig 3.2.3 Formation of a spin wave
This wave is knows as spin wave corresponding to each atom, there is a spin wave. The
guantized spin wave is known as “Magnon”.
3.2.3a Dispersion relation for magnons

The interaction energy between magnetic moment and applied magnetic field is
represented by

N —
U=-gug> A,H, = L (3.2.12)
p=1

fip =—0usS, isthe magnetic moment and H ,isthe magnetic field at the site p.

Now the interaction between spinsis represented by



M.Sc. physics 6 Magnon theory

N N
.......... 2.1
U=-255,= 23.)[5.,5 +S:5..] (3213
P=1 P=1
comparing the coefficients of Spin equations (3.2.12)and (3.2.13) we get

(3.2.14)

from the elementary mechanics we know that the rate of change of angular momentum i.e
,%(hsp) isequal totorque 7 =i, xH

. d
e o —(rS,)=f,xH, (3.2.15)

2]
=22 ~015(S, % (5,4 +S,.)
g Hg
2j. -
= 2o (8 x(S,,+S,1) v (3.2.16)

Resolving S, in to three components, we have

ddSt Zefsr(sz, 152, )-s2(s,+SL)] (32.17)
dd_Stry» Zhi [s:(s,+55,)-5: (s, +5%)] (3.2.18)
ds; _2j, [SX(syl +sl)-sisL s (3.2.19)

dt
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All these three egquations are linear set of equations .If we assume that the amplitude of the

excitation is very small , then S7,S/«S and S =S/, =S, , = S,the equations 3.2.17,3.2.18

p*=p p+1

and 3.2.19 will be modified to

\
dS b _ 2je y _ y y
= slesy - s(sy, + sy,
dSy 2- X X X
- ri Ssi,+s)-28] and P (3.2.20)
% g
dt J

Equation 3.2.20 can be solved by assuming the solution as

) i( pka —wt
S =ud™ ) and S, = ve!(Pa-et) (3.2.22)

where u, v are amplitudes of spin waves, p is an integer, ais the lattice constant and k is the
propagation constant.
Substituting eqn.3.2.22 in egn.3.2.21, one gets,

(o) P = % S[Zvei(pkawt) _yelalp o) _yeilalpiyo)

. ; _ H —ikai ika
= (—ia))u:—zjes[Zv—ve“‘a —ve”“"}:—419 1-|e—
h h 2

- % S@l-coskay .. (3.2.23)

similarly from y component we get
(Ciov=— % Si-coskalu e, (3.2.24)
For non-vanishing values of uand v, we must have

—iw ~ 22 (1- Coska

=0
222 (1-Coska ) i
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2

o ot [ cosay o

ho = 4),S(1- coska)=8 jes{sinz k—z""j .......... (3.2.25)

2j.%a’

for small valuesof ka, o = k? = hoock?®, ... (3.2.26)

this is known as the dispersion relation for magnons . A plot between and ka isas

4]

shown in Fig 3.2.4.

kaTc

Fig 3.2.4. Dispersion relation for Magnon in ferromagnetic material

3.2.3b Quantization of spin waves

If we have got ‘N’ paralld spins in the system each of value S .Then the total spin
guantum number of system if all the spins are parallel is N.S. |If the some of the spins are anti-
parallel(exited) the total spin decreases. Now let us find the relation between the amplitude of
the spin wave and reduction of Z-component of total spin quantum number .
The z -component and the amplitude of the spin are related to each other asin the Fig 3.2.5,

S/ s

Fig3.25
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2 \1/2 2 2
From the Fig. we have, SZ:(SZ—UZ)”2 = 1—“—2 ~§1- uz —|s- L
S 2S 2S

Or SS,~— (3.2.27)

The spin wave k exited the total spin N.S isreduced by ny. Thenthetotal excited spinsor
magnons of wave vector k are given by

2
n,~N ;LQ Or uf ~ nk|\2|S

Uk isthe amplitude of the k-spin wave and ng the integer represents the number of magnons that

.......... (3.2.28)

are excited. The amplitude is quantized and hence the reduction in the spin (S-S,) is quantized
i.e., the spin wave is quantized.

_L2usin ]—\i-rj

Fig3.2.5

The exchange energy given by 3.2.11 depends on cosine of the angle between the spins p and
p+1. The tips of the two spin vectors as shown in the Fig 3.2.5 are separated by a distance

sin(ka/2) so that the angle between the two vectorsis given by
2
sing/2= %sin ka/2; for (WS) «1,cosp =1- 2(%) sin’ k_2a .......... (3.2.29)

The exchange energy is now given by
U ~ -2JNS? + ANU’sin®(kal2) = -2JNS* + 4JNu’(1-coska)

The excitation energy of a spn wave of amplitude ux and wave vector kK is
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€, =4JN u(1—coska) , substituting the value of u, from 3.2.28 we have,

€, =4JS(1-coska) nx= n i,  from the equation 3.2.25

Hence the energy of the spin waves can also be taken asintegral multiples of 7o, .
i.e, e=nho, (3.2.30)

3.2.3c Bloch T% Law
We known the expression for the interaction energy as

U=-2j.>'S,S,,
p=1

— Exchangeenergy, U= S,.S,,;.

The number of energy states whose wave vectors lies below ‘k’ then per unit volume is

represented by

1\’ 4nk3
(ﬁj : N (3.2.31)

Then the No. of mangnonsintherange o and do is

D(w)dw= (&) 431k & do N (32.32)
We know that,
H 2 H 2
o=| 2 e 9o 215 | N (32.33)
h dk i
From this
1 h 1/2 h
(0]
D(w)dw = k dow | or
(@)do 4712[2]683} (2jes§ wj
1 h 3/2
D(w)= V2o 3.2.34
o) gt | o a2

The total number of magnons excited

> n =ID(@)N(@)do . .......... (3.2.35)
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(& o] Teg
= 477:2 ZJGSaZ O(eﬁﬁw _1)
(] 1654
47% ) 23, S| ¢ (ef-1) (KT

3%
1 1 NG ho
= KTY2[2 gx wherex=22
(47#) 2J.S.° (KT) -([(ex—l) T

00587(KT)/2 ] (3.2.36)
(20.82)°
Q

The number of atoms per unit volumeisgivenby N =—

w

Where Q= No. of atoms per unit volume
=1 for simple cubic
=2 for b.c.c
=4 for f.c.c

a =volume of the unit cell

Nk

N_ = thefractiona charge of ground state magnetization = K="

Where My is magnetization at absol ute zero.

%
AM 0.0587( K J %

) 2157

M, | NS

AM 1 e

0
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Thisresult is due to Felix bloch, known as the Bloch T% Law and isfound to hold good at low
temperatures. At high temperatures, a high density of magnons is created and the assumes spin

model breaks down, resulting in the invalidity of the law at such temperatures.

3.24 Summary of the lesson
Detailed explanation on the Weiss internal molecular field has been given. The spin wave theory

guantization of spin waves and thermal excitation of magnons have been discussed in detail

3.25 Keywords

Weiss field-Exchange Interaction-Magnons- spin waves -Bloch T% Law

3.26 Sdf — Assessment questions

1. Explain Weissinternal molecular field in detail.

N

What are magnons ?.Derive the dispersion relation for the magnons.

w

Derive the quantization condition of spin waves.

4. Derive Bloch T% Law for magnons

3.2.7 Reference Books:
1. Elements of Solid State Physics — J.P.Srivastava ( PHI, New Delhi, 2003)
2. Introduction to Solid state Physics — C.Kittel ( Wiley Eastern, New Delhi, 2003)
3. Solid State Physics— A. J.Dekker ( Macmillan , Madras, 1986)



UNIT -3
LESSON -3
ANTI- FERROMAGNETISM

Objective of the lesson

To discuss the Neel’ s theory of anti-ferromagnetism

Structure of the lesson
3.3.1 Introduction

3.3.2 Nedl’ s theory

3.3.1 Introduction :

In the case of ferromagnetism, the internal field in ferromagnetic material arises due to
exchange interaction that lines up neighbouring spin moments. For such cases, in
ferromagnetism exchange integral is positive. However, in some compounds and transition
metals, the exchange interaction is negative below a certain critical temperature that leads to anti
paralel alignment of electron spin in the neighbouring atoms. This phenomenon is known as
anti ferromagnetism and that critical temperature is known as Neel’ s temperature and above this

temperature the materials behave like paramagnets.

3.3.2 Ned’stheory

Anti ferromagnetism was first investigated by Neel’s and Bitter in MnO. The most characteristic
property of a polycrystaline antiferromagnetic is that its susceptibility shows a maximum as
function of temperature; An example of thisbehaviour isgivenin Fig. 3.3.1a. wherea graph is
plotted between magnetic susceptibility ‘y’ and temperatures ‘T’ for MnF,. For the sake of
comparison the variation of susceptibility with the temperature for paramagnetic and
ferromagnetic materials are aso presented in the same figure.This characteristic feature may be
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Fig 3.3.1a Molar susceptibility ‘y’ asafunction of temperature ‘T for MnF; an anti-
ferromagnetic material. Figs b and c represent the same plots for paramagnetic and
ferromagnetic materials

explained qualitatively on the basis of two sub-lattice model considering the unit cell of MnO.
The alignment of the spinsin the unit cell are as showninthe Fig. 3.3.2.

Fig. 3.3.2.Alignment of the spinsin the unit cell of MnO

In the two sub lattice model we have two sub-lattices - one parallel and another is anti paralel.
The interaction between parallel and anti-parallel spins gives anti- ferromagnetism. The

manganese ions are at the corners and the oxygen ions are at the centres with opposite spins
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(Fig. 3.3.2) A similar saturation can be represented like MnF, & FeF, etc. In antiferro

magnetism, we expect two types of interactions.
1. A - Binteractioni.e. theinteraction between the two anti parallel spins.
2. A-A & B-B interactionsi.e. the interaction of parallel spins.

The magnetic field at the sitesA and B is given by

Hma=H - aMa-BMp 331

Hmb = H—BMa-aMy e 3.3.2
Where H isthe applied field and M5 and M|, represent the magnetization of the A & B

lattices. o is Weiss constants correspondsto A - A & B - B interactions and 3 corresponds to

A-B interaction

3.3.2a When T > Ty, when the temperature is above the Neel temperature, we are for away

from saturation.

_ N
@ 3KT

M

with p?=pg?g?J(J+1)

where N is the number of A atoms per unit volume. If we assume that the dipoles on the B sites
are identical with those of the A sites and that there are equal numbers of A and B sites, we may

write similarly,

N2

M =
b 3KT

Hp

Substituting equations (3.3.2) in the equations for M, and My, gives the following equation for
the total magnetization M =M _ + M,
N ?

=%)(ZH ~(@+pM 333
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This equation becomes a scalar equation if we assume that M and H are paralel. On this

assumption we can solve for the susceptibility, leading to

M 2Ny’ /3K
= = = T
= X H T—I—(N/,[Z/SKXO{—}—ﬁ) C/( +0) ............. 3.34
Wherec= 2N ® /3K ande=(N,u2/3KXa+ﬂ) ............. 335

This may be compared with expression for the susceptibility of a magnetic material above the
critical temperature. It is observed that the antiferromagnetic case contains T + 0 rather than T-
6 ; moreover the Curie constant C is twice the Curie constant C is twice the Curie constant of
the individual A or B lattice. In order to illustrate the difference between the paramagnetic, the
ferromagnetic, and the antiferromagnetic behavior in the high- temperature region, we have
plotted in Fig. 19-13 I/l versus T. For the three cases one obtains

Fig.3.3.3 . The reciproca Susceptibility versus temperature for a para-,Ferro-,Antiferro

magnetic materia above the critical temperature.

3320 When T =Ty,

At the Ned temperature Ty itself, one is still sufficiently far away from saturation
effects to employ the equations given above for M, and My, . Thus in the absence of an applied

magnetic field we may writefor T = Ty, we have,
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N
M, =- oM , + M
a (3KTN)( at M)
N N
1+ M, +| —|fM, =0
or ( 3KTN ja a [BkTN ﬁ b — Y 3.36

and similarly, from My, we have,

N2 N
M_ +|1+ M_ =0
(SkTNjﬁ a { (SkTN a M, .37

The equations 3.3.6 and 3.3.7 have a non-vanishing solution for M, and My only if the

determinant of their coefficients vanishes.

2 2
ie. 1+ Nu o Nu B
3KT, 3KT,
2 2 =0
Nu B 1+ Nu o
3KT,, 3KT,,
N 2
= Ty= 3’; (B-a) =CP-w)2 e 338

(since 2N p?/3k = C)
The equation 3.3.8 indicates that the Neel temperature
(i) increases as the antiferromagnetic AB interaction (3) becomes stronger,

(i) decreases with increasing antiferromagnetic AA and BB interaction (o)
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Relation between the Neel temperature and 6,

From the equation 3.3.4 we have
0=Nu2(a+pB)I3k=Cla+pB)I2

from equations 3.3.8 and 3.3.9, we get

%N=(ﬂ—a)/(ﬂ+a)

............. 3.39

............. 3.3.10

A comparasion of this result with the observed values of Ty and 6 are given in Table

3.3.1 for some anti-ferromagnetic materials It is noted that experimentally Ty < 6 in all cases,

indicating that o must be positive; this in turn seems to indicate that in so far as the present

model is applicable, thereisindeed an antiferro- magnetic AA and BB interaction.

Table 3.3.1. Some Parameters of selected Antiferromagnetics.

Compound  Crystal Cation Lattice Ty (°K) 0 (°K) Yo
Structure structure Z_TN
MnF; rutile b.c.tetragona 72 113 0.76
FeF, rutile b.c.tetragona 79 117 0.72
CoR, rutile b.c.tetragonal 38 53 -
NiF, rutile b.c.tetragona 73 116 -
MnO;, rutile b.c.tetragona 84 316 0.94
MnO NaCl f.c.c. 122 610 0.67
MnS NaCl f.c.c. 165 528 0.82
FeO NaCl f.c.c. 198 570 0.79+
CoO NaCl f.c.c. 292 280 -
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3.3.2c:when T < Ty

Let us now consider the susceptibility of an anti-ferromagnetic material below the Neel
temperature; for simplicity we shall assume only AB interaction, i.e., we shall assume o = 0.
First, as aresult of crystalline anisotropy, there will be one or more natural spin directions along
which the spins will tend to align themselves. There are therefore two cases of special interest;

(a) An applied magnetic field perpendicular to the natural spin direction.
(b) An applied field parallel to the natural spin direction.
Case (a) has been represented schematically in Fig. 3.3..3

H
4 B ~4 ‘}T’M ;l 20 AT
Le—" BT e
-8M,

Fig. 3.3.4 Applied magneticl:a field perpendicular to the natural l'Epin direction.

In the present case, the field tends to line up the dipoles along the field direction, but as a
result of the tendency for the A and B dipoles to remain antiparallel, a compromise is obtained
in which the dipoles make a certain angle ¢ with the original spin direction. To calculate the
susceptibility y, for this case, consider one of the dipoles B as made up of two unit poles, as
indicated in Fig. 3.3.4 b. The forces on the positive pole are H and -BM,, as indicated; the
forces on the negative pole are equal but of opposite sign. In equilibrium, the resultant forces

should lie along the line joining the poles.

Fromthe Fig.3.34b, we have BM,Tan 2¢ =H ,so that for small angles ¢ we must have

2BMap=H
since M, = My, the total magnetization along the external field direction is equal to
M = (Ma+ My) ¢=H/B Or x, =1Up ..3311

= y, is independent of temperature. It can readily be shown that y, 6 is equal to the
susceptibility at the Neel temperature when approached from the high-temperature .
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Case (b) applied field parallel to the natural spin direction.
(b) The calculation of the susceptibility y; corresponding to an applied field along the natural

spin direction is much more complicated, since statistical methods involving Brilliouin
functions must be employed. Detailed theoretical calculations show the variation of

susceptibility x; with temperature for different J values: the susceptibility rises smoothly from

zero to y (T n) as the temperature increases.

T/Tn
Fig.3.3.4 The variation of susceptibility ; with temperature for different J values:

The susceptibility below the Neel temperature in polycrystaline materias is given by an
average value lying between y and 1y ; asaresult, one obtainsin such cases a susceptibility

versus temperature curve of thetypeindicated in Fig. 3.3.1 a.

3.3.3 Summary of thelesson
The origin of the anti- ferromagnetism and the detailed theory Neel’ s theory

Anti ferromagnetism are discussed in detail. Various cases of anti- ferromagnetic susceptibility

with the temperature have a so been discussed at in depth

3.34 Keywords
Anti- ferromagnetism - Nedl’ stheory —Nedl’ s temperature

3.35 Sdf — Assessment questions
1. Discuss briefly Nedl’stheory of Anti- ferromagnetism
2.Derive the expressions for anti- ferromagnetic susceptibility at (a) T>Ty (b) T=Tn
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and (c) T<Tn
3. Obtain Relation between the Neel temperature and Curie temperature
3.3.6 Reference Books:

1. Elementsof Solid State Physics— J.P.Srivastava ( PHI, New Delhi, 2003)
2. Solid State Physics—A. J.Dekker ( Macmillan , Madras, 1986)



Unit: 3
Lesson : 4
Ferrimagnetism
Objective of the lesson
e Todiscussthe origin of ferrimagnetism
e Toexplorethe structure and characteristics of ferrimagnets
e Todiscussthe expression for the susceptibility based on Neel’ s theory
e To discuss briefly the methods to probe the structure of the magnetically ordered
materials.

e To describe the characteristics of other novel magnetic materials

Structureof thelesson

3.4.1. Introduction

3.4.2. Structure of Ferrites

3.4.3. Characteristics of ferrites

3.4.4. Nedl’ stheory of Ferrimagnetism

3.4.5. Determination of magnetically ordered structures
3.4.6. Novel magnetic materials

3.4.1. Introduction

The material most popularly called as load-stone with the chemical formula FesO4
(magnetite) is probably the oldest magnetic known to mankind. The general formula of this
material is Me®'Fe,>"0,. where Me?* stands for divalent ferrous ion or any other another
divalent metal such as Mn, Co, Ni, Cu, Mg, Zn, or Cd, In mixed ferrites the Fe* ion is replaced
by amixture of ionslike MnZn.. The d-c resistivity of ferritesis 10* to 10* timesislarge as that

of iron. Thusin transformer cores they can be used up to much higher frequencies than iron.
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3.4.2. Structureof Ferrites

The ferrites belong to the large class of compounds which have the spindl structure
(after the mineral spinel, MgAl,O,). The unit cell contains 32 oxygen ions, 16 Fe** ions, and 8
divaent metal ions. The total of 24 metal ions, ranging in radius between 0.4 and 1 A°, are
distributed amongst eight tetrahedral interstices (surrounded by four O% ions) and sixteen
octahedral interstices (surrounded by six O% ions).

The distribution of the metal ions is very important for an understanding of the magnetic
properties of these Materids; the following distributions may occur,
3.4.2.a. The"normal" spindl structure:

In this case the structure of ferrite consists 8 divalent metal ions occupy tetrahedral

positions; 16 trivalent iron ions occupy octahedra positions.
The notation for this structure: may be given as
M e2+[ E e23+] Os
the brackets around the Fe** ions indicating that they occupy octahedral sites.

Examplesfor this structure are , ZnFe;O,4, CdFe,O4

3.4.2. b. Inverse spinel structure of aferrite,

In this case the divalent Me?* ions occupy octahedral sites; the Fe** ions are distributed in equal
numbers over the tetrahedral and octahedral sites, that means 8 in each site . The arrangement

may thus be represented by
Fe*'[Fe* Me™] 0,

Examplesfor this structure are , CoFe,O,4, CuFe,O4 MgFe,O4

3.4.2.c. Intheintermediate structure we have arrangements of the type

Fe’ Mew ' [Fex ' Mel’] Oy



Acharya Nagarjuna University 3 Centre for Distance Education

3.4.3. Characteristics of ferrites

Some of the important characteristics of the ferrimagnetic materials are given below:
These materials have got very high resistivity of 10 to 10,000 Mega ohm —cm.
The microwave dielectric constant of thes materialsis of the order of 10 to 12.
The dielectric loss of these materialsis extremely low.
Magnetic permeability of the ferritesis very high.

g &> W DB

Saturation magnetic moment is appreciably high but noticeably smaller than the
ferromagnetic materials.
6. The Curie temperature of these materialsisvery high.

7. Eddy current losses of these materias are very low.

These are al the extra-ordinary properties of the ferromagnetic materials that make them

suitable for industrial applications like microwave devices, isolators and gyrators etc.

3.4.4. Ned’stheory of Ferrimagnetism

In order to explain the magnetic properties of ferrites, Neel in 1948 developed this
theory. The importance of the distribution of the metallic ions over the tetrahedral and
octahedral sites may be illustrated with reference to the saturation magnetization for smple and
mixed ferrites. The ferrites are essentially ionic compounds; the saturation magnetization of

these materials may therefore be calculated from the number of unpaired spins of the ions.
For example, in magnetite, i.e, Fe** [Fe*" Fe*]O,

the Fe?* and Fe*" ions have, six and five 3d electrons respectively.

The magnetic moment of Fe*"ion= 4 pg

The magnetic moment of Fe** ion=5 pg

The net magnetic moment per molecule of Fe;O, is therefore =(4+5)-5 = 4 pg,

which isin close agreement with the experimenta value.
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According to this theory, there exists a "negative" interaction between the ions on the
tetrahedra sites (A Sites) and the octahedral sites (B sites) which tends to promote an
antiparallel spin alignment of the A and B ions. Besides this negative AB interaction, we must
also take into account an AA and BB interaction. Thus the ferromagnetic behavior can be
explaned in terms of three antiferromagnetic interactions. Neel coined the term
"ferrimagnetism” for this type of behavior.

In order to give the essential features of Neel's theory, we shall consider the relatively

simple case of aferite represented by the formula
Fe’ Mew ' [Fex " Mel’] Oy

where Me”" is a diamagnetic ion. We shall assume that the AB interaction is a negative. The
AA and BB interactions will be represented by afactor -o and -  respectively, giving the sign
and strength of these interactions relative to the AB interaction. Thus, when o turns out to be

negative, it indicates that the AA interaction is antiferromagnetic.

Let M, denotes the magnetization associated with the A sites (tetrahedral sites) similarly My,
denotes the magnetization associated and B sites (octahedral) per gram ion, then the total

magnetization per moleis

M=xMat+@2-X)Mp. e (3.4.1)

Ha=H-y[(2X)Mp-0XxMa] oo (3.4.2)

where H is the applied field, -y(2 -x)My, is due to the negative AB interaction, and yaxMa is

due to the AA interaction.
Similarly, the molecular field acting on a B atom is given by
Hpo=H «y[xMa-B(2-x)Mp] ... (3.4.3)

We shall first consider the paramagnetic region abovethe Curie point.
Under these circumstances the partial magnetizations may be assumed to follow a Curie-Weiss

law, i.e.,
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Ma=CrHdT and  Mp=CpHy/T ..oo...... (3.4.4)

where C,, isthe Curie constant per mole; the C,,'s are the same for the A and B |attices, because

for the example chosen here, the Fe** ions are the only magnetic ions. substituting Ha and Hy, ,

we get
%:Z_:mzclm+z_lo_% .......... (3.45)

where T =(/af2x2--a X -B2-X?] .. (3.4.6)
o= 1—16;/2me(2— xA+a)-2-xA+ )} (3.4.7)

and 0 = %yme(Z— N@2+a+B) (348)

When 1 is plotted against T as per the equation 3.4.5, we get a concave curvature toward
lmole

the T-axis. Thisis waell in agreement with experiment. From the shape of the experimental
curves we can find y,, o and 0; hence X, a,f, and y can aso be obtained, at least
qualitatively. For several ferrites Nedl found that both « and g are negative (i.e., the AA and

BB interactions are also antiferromagnetic). Furthermore, || and || are both <<1, indicating

that the AB interaction predominates over AA and BB interactions in the region above Curie
point.

The spontaneous magnetization in theregion below the Neel point
We put H = 0in (3.4.2) and (3.4.3). Since there are saturation effects, we cannot employ the
Curie- Weiss law, and We therefore must replace equations (3.4.5) by the following general

expressions
M, =NgSugBs(9SugH, /kT) (3.4.9)

M, = NgSuzBs(gSuH, /KT) .. (3.4.10)
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here N represents Avogadro’s number, since Ma and Mb refer to amole.

From these expressions together with (3.4.2) and (3.4.3) (With H=0)
one can obtain M, and My, i.e., the total magnetization
M= (2 -x)M, -xMa

asfunction of T. The solutions depend on thevaluesof x as giveninFig. 3.4.1

Fig. 3.4.1. The calculated spontaneous magnetisation as a function of temperature for
varying ratio of Ferricionsin A and B sites.

We may make here some further remarks on the curves given in Fig.3.4.1. From X-ray
diffraction data it follows that in the mixed zinc ferrites the Zn?* ions occupy tetrahedral (A)
sites, as they do in the pure zinc ferrite (which has the normal spina structure). The other
divalent ions Mn®*, Ni?*, etc. occupy octahedral sites and the Fe** ions are distributed over the
remaining tetrahedral and octahedral sites. Thus the mixed zinc ferrites satisfy the
representation

Z f+ Fe 13—+x [Fe f:x Me 12—+x :b 4

Thus apart from certain details , Neel’s theory describes the experimental observations quite
well.
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3.4.5. Deter mination of magnetically ordered structures

The use of a slow neutron beam diffraction has certain distinct advantages, especially
while dealing with the magnetically ordered materials when compared with the conventional X-
ray diffraction method. The diffracted X-ray photons provide details about the spatial
distribution of electronic charge, but carry no information about the atomic magnetic moment
vectors in amagnetically ordered structure. On the other hand, a beam of slow neutrons serves as
an excellent probe of local moments since the neutron itself has a magnetic moment which
couples to the spin of elementary moments in a magnetic crystal. As a result of this coupling
there appear peaks, in the diffraction pattern in addition to those belonging to the non-magnetic
Bragg reflection of neutrons by the atomic nuclei.

The advantages of neutron beam are best appreciated in antiferromagnetic solids. As an
example, consider the neutron diffraction pattern of MnO below and above the Neel
temperature (120 K) in Fig. 3.4.2. Severd linesin the pattern recorded at 80 K are not observed
at 293 K, simply because the corresponding Bragg reflections originate from the magnetic
ordering which exists no more above 120 K.

100 |- T\ % l ) a—gssA ,|
] i

80 | J o
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1
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Fig. 3.4.2. Neutron diffraction patterns for an aniferromagnetic solid (MnO) below and
above the Neel temperature (120 K).
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Nuclear magnetic resonance offers another way to investigate the microscopic spin structure. For
determining the size of a unit cell of acrystal having magnetic ordering it becomes imperative to
take into consideration not only the equivalence of the sites but also the equivalence of the

magnetic moment vectors located at those sites.

The size of a unit cell for an anti ferromagnetic crystal as obtained by the X-ray diffraction is
just half the size given by the neutron diffraction. The unit cells determined by the two
techniques are referred to as chemical unit cell and magnetic unit cell, respectively. This point is
clarified in Fig. 3.4.3. with the help of the ordering of moments of Mn?* ions in the unit cell of
RbMnF; (Ty = 54.5 K).

emigar~]
Unjy cef]

Fig. 3.4.3. Antiferromagnetic ordering of Mn®* spin momentsin acrystal of RoMnFs.

3.4.6. Novel magnetic materials: GMR-CMR Materials

Recently, some magnetic materials are found to exhibit an extraordinarily large
magnetoresistance known as Giant Magneto Resistance (GMR). This spectacular property of
the materials makes them suitable for applications in device applications such as (i) magnetic

recording (memory storage), (ii) actuators and (iii) sensors.
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The first observation concerning GMR was made in respect of Fe/Cr multilayers with
thin Cr layers, prepared by molecular beam epitaxy (MBE). For Cr layers of 9 A° thickness
the resistivity was found to drop by almost a factor of 2 in a magnetic field of 2T at 4.2 K
(Fig. 3.4.2), giving a negative GMR of about 50 per cent.

Another term Colossal Magneto Resistance (CMR) is often used to describe the
extremely strong influence of the magnetic field. The CMR is defined as

Ap _ p(B)—p(0)
p(B) p(B)

The GMR-CMR effect is observed generally at low temperatures in the presence of large

P(BYP(0)
| 1

0.8
0.7

0.6

(Fe 30 A/Cr9 A)g,

0.5 T
B
I

s

1 | ! 1 |
40 -30 20 10 0 10 20 BFO 4I0

Magnetic field (kG)
Fig.3.4.4 Variation of resistivity of multilayers [(001) Fe 30 A°/(001) Cr 9 A°] as a function of
the magnetic field at 4.2 K.

magnetic fields (- a few teda). But we require to exploit this property ideally near room
temperature and at low fields for enhancing the technological viability of GMR-CMR materials.
Hence, ever since the discovery of GMR and CMR a relentless activity has been on to develop
such materials. Recently, a promising class of magnetic materials with composition R;.
AxMnO3 (R = La, Nd, Gd, Y; A = Ca, Sr, Ba, Pb) has been identified. These manganites
having perovskite structure have the unique distinction of being paramagnetic and
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semiconducting at high temperatures. They make a transition to the ferromagnetic and metallic

state at low temperatures. Thisis unusual of meta insulator systems because they are generally

metallic at high temperatures. In the metallic state the resistivity is unexpectedly high.
In epitaxially grown thin films of La-Ca-Mn-O, MR is found to depend strongly on

film thickness and temperature. The CMR reaches its maximum (in excess of 10° per cent) at
110 K with the magnetic field at 6 T (Fig. 3.4.5). The peak occurs just below the Curie
temperature. For films thicker than -2000 A, the MR is reduced by few orders of magnitude.
The presence of grain boundaries leading to lattice strain is detrimental to achieving large MR.

The MR improves further on heat treatment.

! ! 1 L . L
100 200 300

0
Temperature (K)

Fig.3.4.5. Variation of magnetoresistance of a thin film of LaCaMn-O as a function of
temperature.

Several theoretica approaches have been advanced to understand ferromagnetism and
the GMR effect in manganites. The ferromagnetism is interpreted in terms of the coupling
between charge carriers and the coupling between localized spin moments of Mn ions. There are
two striking features of GMR-CMR effect in manganites. Firstly, the MR peak can be shifted to
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occur at room temperature by adjusting the processing parameters. Secondly, the resistivity can

be manipulated by magnetic field to change by orders of magnitude.

3.4.7 Summary of thelesson

Different possible structures for ferromagnetic materials have been described in detail. Neel’s
theory of ferromagnetic materials that gives the information about the variation of
susceptibility with temperature has been discussed in depth. Different methods for determining
the structure of the magnetically ordered materials have been described in brief. Information
about other classes of novel magnetic materias that exhibit some extraordinary properties has

also been given.

348 Keywords
Ferrimagnetism — Ferrites — Spinel structure — GMR and CMR magnetic materials.

349 Sdf — Assessment questions

What is ferrimagnetism? . Discuss briefly different structures of ferrites.
Discuss Neels theory of ferrimagnetism.

Discuss briefly the structural determination of magnetically ordered materials.
Write anote on GMR andf CMR materials.

A 0D P

3.4.10 Reference Books:
1. Elementsof Solid State Physics— J.P.Srivastava ( PHI, New Delhi, 2003)
2. Theory of magnetism — D.C.Mattis ( Springer, 1985)



UNIT =1V
LESSON 1

SUPERCONDUCTIVITY AND PHYSICAL PROPERTIES OF
SUPERCONDUCTORS

Objective of the lesson
To discuss the phenomenon of the superconductivity and some of their physical properties.
Structureof thelesson

4.1.1. Introduction

4.1.2 Magnetic properties of superconductors
4.1.3. Electrical properties of superconductors
4.1.4. Thermal entropy

4.1.5. Microwave and infrared properties

4.1.6. |sotope effect

4.1.7. The two fluid model

4.1.1. Introduction

Generally, the resistance of metals deceases when cooled below room temperature. However,
prior to 1911, it was not known what limiting value the resistance would approach, when the
sample temperature is reduced to very close to 0 K. William Kelvin believed that electrons
flowing through a conductor would come to a complete halt as the temperature approaches
absolute zero.  In 1911, Kamerlingh Onnes began to investigate the electrical properties of
metals in extremely low temperatures. Onnes measured the resistance of pure mercury as a
function of temperature. Much to his surprise there was no levelling off of resistance. Instead
the resistance at 4.2 K suddenly vanished (Fig. 1.1) and the current continued to flow without the

voltage drop. According to Onnes, "Mercury has passed into a new state, which on account of
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its extraordinary electrical properties may be called the superconductive state”. Kamerlingh
Onnes called this newly discovered state, Superconductivity. For his discovery of
superconductivity, he was awarded the Nobel Prize in 1913. The magnetic field associated with
the super current was measured by File and Mills using nuclear magnetic resonance technique
and concluded that the decay time of the super current is not less than 100, 000 years. But in

some superconducting materials finite decay times are al so observed.

The superconductivity appears only in some substances and the transition temperature T. is
different for different substances.

Critical Temperature

The critical temperature, T, is the temperature at which the transition from normal substance to
superconducting vice versa occurs, in the absence of externa magnetic field. The properties of
substance are normal above critical temperature T., whereas below T, substance exhibits

superconducting properties (Fig.4.1.1)

Fig4.1.1. a DCresistivity p asafunction of temperature of a super conductor

b. The superconducting transition in impure and pure samples.
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4.1.2 Magnetic properties of superconductors

a. Thecritical field

The superconductivity property of a substance can be destroyed by an application of magnetic
field. The magnetic filed required to destroy the superconductivity is called the critical field, H,
above which it becomes normal and recovers its normal resistivity evenat T < T.. For agiven
substance, the critical field decreases as the temperature is increased from T < T to T,

following the relation:
HiM=HO[1-(TT*] (4.1.1)

Remember, the critical field need not be external. The current flowing in a superconducting ring
creates its own magnetic field, and if this current is large enough so that its own field attains the
critical value, then the superconductivity gets destroyed. Thisiscaled Silsbee’srule.

b. Meissner Effect

The expulsion of magnetic flux completely from a superconductor is known as Meissner effect.
In 1933, Meissner and Ochsenfeld observed that a superconductor expels magnetic flux
completely (see Fig. 1.2). They also demonstrated that this effect is reversible, when the
temperature is raised from below T, the flux suddenly penetrates the specimen after it reaches

T, , and the substance attains the normal state.



M.Sc. Physics 4  Superconductivity — Physical Properties

LALLLL A h

H > H, H < He

Fig.4.1.2 The Meissner effect : The magnetic flux is expelled from superconductor.

The magnetic induction inside the substance is given by

B=po(H+M)=po(1+yx)H ... (4.1.2)

where H is the external intensity of the magnetic filed, M is the magnetization of the medium,
and Yy is its magnetic susceptibility. Since B = 0 in the superconducting state, it follows that

M =-H,

It means that the magnetization is equal to and opposite to H.  The magnetic susceptibility is
then given by

v=MH=-1 (4.1.3)

i.e., the superconductor is a perfect diamagnet.
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c. Typel and Typell superconductors

A materia which exhibits complete Meissner effect is called Type | superconductor (Fig. 4.1.3).
The values of H. are always too low for type | superconductors. Other class of superconductors
which can exist in a mixed state, with superconducting and normal regions (Fig.4.1.3) and are
known as type Il superconductors. These materials are aloys or transition metals with high
values of the electrical resistivity in the normal state.

Type Il superconductors have two critical fields, He; < He < Hep. In the region between He; and
Hc, the superconductor is said to be in the vortex state. They are characterized by a lower

critical filed Hc; at which magnetic flux begins to enter the superconductor

TYPE I TYPE I
3 /]
I % / |
ki -~
N
! |
\
Lt | =
Super conducting| Vortex state
state ' | Hommal state
H, L
Applied magnetic field Ba Hy ", He

Applied magnetic field Ba

Fig.4.1.3 Typel and type Il superconductors

and an upper critica field He, at which superconductivity disappears. A material can change

from type | to type Il on the substitution of some impurities.
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4.1.3. Electrical properties of superconductors

A superconductor has no resistance. This would mean that there is no voltage drop along the
superconducting material when current is passed through and no power is dissipated by the
passage of the current. This s true for the direct currents of constant value. If the current is
changing an induced electric field is developed and as such some power is dissipated. Let ustry
to understand the reason for this.

Below transition temperature the conduction electrons get divided into two classes, some of the
electrons behave as "superelectrons’, which can pass through the superconductor without
resistance, the remaining behave as conduction electrons in a norma metal. In a
superconductor the current can in general be carried by both the norma and superelectrons.
However, below transition temperature the current is carried by superconducting electrons.
This can be explained as follows: if the current is to remain constant, there must be no electric
field in the superconductor, otherwise the superelectrons would be accelerated continuously in
thisfield and the current would increase indefinitely. If thereis no field thereis nothing to drive
the normal electrons and so there is no normal current. We conclude that a constant value of
total current would mean that all the current is carried by the superelectrons. A superconductor
is like two conductors in parallel, one having a normal resistance and the other zero resistance.
We can say that the superconducting electrons short circuit the normal electrons.

But if an adternating field of sufficiently high frequency is applied, a superconductor responds in
the same way as a normal metal. This is due to the superconducting electrons are in a lower
energy state than normal eectrons and the applied frequency has enough energy to excite
superconducting electrons into the higher states where they behave as normal electrons. This

happens for frequencies higher than about 10" Hz.
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4.1.4. Thermal entropy of superconductors

The entropy is a measure of disorder of a system. In all superconductors the entropy
decreases on cooling below the critical temperatures. The decrease in entropy between normal

state and superconducting state represents that the superconducting state is more ordered than
the normal state (See Fig. 4.1.4).

1,

K

Entrapy (m1mal

Temparature (K)

Fig.4.1.4. Variation of entropy of a super conducting and a norma conducting materia
with temperature

The peaking C, just below indicates an appreciable increase in entropy as T increases toward T,
, and transition to the normal state becomes imminent. Thus the superconducting stete has a
greater degree of order than the normal state.

4.1.5. Microwave and infrared properties

The existence of an energy gap in superconductors means that photons of energy less than the
gap energy are not absorbed. Nearly all the photons incident are reflected as for any metal
because of the impedance mismatch at the boundary between vacuum and metal, but for a very
thin (~ 20 A%) film more photons are transmitted in the superconducting state than in the normal
state. For photon energies less than the energy gap, the resistivity of a superconductor vanishes

at absolute zero. At T << Tc the resistance in the superconducting state has a sharp threshold at
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the gap energy. Photons of the lower energy see a resistance less surface.  Photons of higher
energy see a resistance that approaches that of the normal state because such photons cause
transitions to unoccupied normal energy levels above the gap. As the temperature is increased
not only does the gap decrease in energy, but the resistivity for photons below the gap energy no
longer vanishes, except at zero frequency. At zero frequency the superconducting electrons
short-circuit any normal electrons that have been thermally excited above the gap. At finite
frequencies the inertia of the superconducting e ectrons prevents from completely screening the

electric field, so that thermally excited normal electrons now can absorb energy.
4.1.6. | sotope effect

The variation of critical temperature of superconductors with the average isotopic massis called
isotopic effect. The transition temperature changes smoothly when different isotopes of the
same element are mixed. The empirical relation between the critical temperature and average

atomic mass can be represented as
M®T.=congtant. ... (4.1.4)

The origina BCS model gave the result T is proportional to M™? | so that a=1/2, but the

inclusion of coulomb interactions between electrons changes the relation.
4.1.7. TheTwo Fluid Modd

According to the two fluid-model, introduced by Gorter and Casimir in 1934, the conduction
electrons in a superconductor fal into two classes: superelectrons and normal electrons. The
superelectrons experience no scattering, have zero scattering (perfect order), and long coherent
length (about 10* A® ), but the normal electrons behave in the usua fashion as in normal
conductors. The number of superelectrons depend on the temperature. The concentration of

superelectrons, given by Gorter and Casimir, is

n=n[1-(T/TY)*1 ... (4.1.5)
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At T = 0 K dl the electrons in the superconductor are superelectrons, but as T increases the

superel ectrons decreases and al they become normal electronsat T = T..
4.1.8 Summary of thelesson

The phenomenon of superconductivity has been discussed in detail. Electrical and

magnetic of super conductors have also been discussed.

419 Key Terminology

Superconductivity — Zero resistivity — Messner effect— Type | and Type |l superconductors.

4.1.10 Sdf —Assessment questions
1. Giveabrief account on the experimental survey of superconductivity
2. Writeanoteon
a). Meissner effect
b) Type | and Type4 |1 superconductors
c).Isotope effect
d) Microwave and infrared properties of superconductors

€) Energy gap of superconductors

4.1.11 ReferenceBooks

Elementary Solid State Physics by M.A. Omar

Elements of Solid State Physics by J.P. Srivastava

Solid State Physicsby Neil W. Ashcroft and N. David Mermin
Introduction to Solid State Physics by Charles Kittel
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UNIT =1V

LESSON 4

BCSTHEORY AND HIGH TC SUPERCONDUCTORS

Objective of the lesson

To discusthe BCStheory of superconductivity and its predictions.

4.1 BCSTHEORY OF SUPERCONDUCTIVITY

Three American physicists at the University of Illinois, John Bardeen, Leon Cooper, and
Robert Schrieffer, in 1957, developed a model that has since stood as a good mental picture of
why superconductors behave as they do. In 1972, Bardeen, Cooper, and Schrieffer received the
Nobel Prize in Physics for their theory of superconductivity (for Bardeen it was the second
Noble prize in Physics), which is now known as the BCS theory, after the initials of their last

names.,

The BCS theory explains superconductivity at temperatures close to absolute zero. Cooper
realized that atomic lattice vibrations were directly responsible for unifying the entire current.
They forced the electrons to pair up into teams that could pass all of the obstacles which caused
resistance in the conductor. These teams of electrons are known as Cooper pairs. Cooper and
his colleagues knew that electrons which normally repel one another must feel an overwhelming
attraction in superconductors. The answer to this problem was found to be in phonons, packets
of sound waves present in the lattice as it vibrates. Although this lattice vibration cannot be

heard, its role as a moderator is indispensable.
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According to the theory, as one negatively charged electron passes by positively charged ionsin
the lattice of the superconductor, the lattice gets distorted. This in turn causes phonons to be
emitted which forms a trough of positive charges around the electron. Fig. 4.4.1 illustrates a
wave of lattice distortion due to attraction to a moving electron. Before the electron passes by
and before the lattice springs back to its normal position, a second electron is drawn into the
trough. It is through this process that two electrons, which should repel one another, link up. The
forces exerted by the phonons overcome the electrons' natural repulsion. The electron pairs are
coherent with one another as they pass

Superconducting State

Fig. 4.4.1 &5 3 negatively charged electron passes
between the metal's positively charged
atoms in the lattice, the atoms are at-
tracted inward. This distortion of the
lattice creates a region of enhanced posi-
tive charge which attracts another electron
to the area.
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through the conductor in unison. The electrons are screened by the phonons and are separated by
some distance. When one of the electrons that make up a Cooper pair and passes close to an ion
in the crystal lattice, the attraction between the negative electron and the positive ion cause a
vibration to pass fromion to ion until the other electron of the pair absorbs the vibration. The net
effect is that the electron has emitted a phonon and the other electron has absorbed the phonon. It
is this exchange that keeps the Cooper pairs together. It is important to understand, however, that

the pairs are constantly breaking and reforming. Because electrons are indistinguishable

superconducting State

Ared of distortion

=

Fig. 4.4.2 The two electrons, called Cooper Pairs,
become locked together and will travel
through the Tattice.

particles, it is easier to think of them as permanently paired. Fig. 4.4.2 illustrates how two

electrons, called Cooper pairs, become locked together.

By pairing off two by two the eectrons pass through the superconductor more smoothly. The
electron may be thought of as a car racing down a highway. As it speeds along, the car cleaves
the air in front of it. Trailing behind the car is a vacuum, a vacancy in the aimosphere quickly
filled by inrushing air. A tailgating car would be drawn along with the returning air into this
vacuum. The rear car is, effectively, attracted to the one in front. As the negatively charged
electrons pass through the crystal lattice of a material they draw the surrounding positive ion

cores toward them. As the distorted lattice returns to its normal state another electron passing
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nearby will be attracted to the positive lattice in much the same way that a tailgater is drawn
forward by the leading car.

The BCS theory successfully shows that eectrons can be attracted to one another through
interactions with the crystalline lattice. This occurs despite the fact that electrons have the same
charge. When the atoms of the lattice oscillate as positive and negative regions, the electron pair
is aternatively pulled together and pushed apart without a collision. The electron pairing is
favorable because it has the effect of putting the material into a lower energy state. When
electrons are linked together in pairs, they move through the superconductor in an orderly
fashion.

As long as the superconductor is cooled to very low temperatures, the Cooper pairs stay intact,
due to the reduced molecular motion. As the superconductor gains heat energy the vibrations in
the lattice become more violent and break the pairs. As they break, superconductivity
diminishes. Superconducting metals and alloys have characteristic transition temperatures from
normal conductors to superconductors called Critical Temperature. Below the superconducting

transition temperature, the resistivity of amateria is exactly zero.
superconductors
The achievements of the BCStheory include:

1. Aninteraction between electrons can lead to ground state separated from excited states
by an energy gap. The critical field, the thermal properties, electromagnetic properties
etc consequences of the energy gap.

2. The electron-lattice-electron interaction leads to an energy gap of the observed

magnitude. Theindirect interaction proceeds when one electron interacts with

the lattice and deforms it; a second electrons sees the deformed lattice and adjusts itself to
take advantage of the deformation to lower its energy. Thus the second electron interacts
with the first electron via the lattice deformation.



Acharya Nagarjuna University 5 Centrefor distance education

3. The penetration depth and the coherence length emerge as natural consequences of the
BCS theory. The London equation is obtained for magnetic field that vary slowly in
space. Thusthe central phenomenon in superconductivity, Meissner effect, isobtained in

anatural way.
Ginzburg and Landau Theory and flux quantisation

In 1950 Ginzburg and Landau developed a macroscopic theory for superconducting phase
transition based on a general thermodynamical approach to the theory of phase transition. They
considered the long-range order as fundamental and introduced a complex wave function y as an
order parameter to describe the superconducting state, where the density of the superconducting
electrons ng o | \V |2, For a given temperature, the order parameter y is afunction of position
in the material, i.e., it is not constant and vanishes above T.. It is sometimes helpful to think of
y as the wave function for a Cooper pair. Since al Cooper pairs are in the same two-electron

state, asingle wave function is sufficient.
Writing the wave function in terms the magnitude and a phase as
v = lylexple) (4.4.2)
then the current density ca be written as
y J=-(2AImc+eh Vo/m) lyl? ... (4.4.2)
where A is the vector potential.
Let us consider a superconducting material in the shape of aring, we find in aclosed path

2 2
v §3.d =ly[$ (2€A/mc+ehVo/m).di=0 ..cooovnni. (4.4.3)

v §J.d| = j j VXAds = j j BAS=¢ e, (4.4.4)

where ¢ is the flux enclosed by the ring. Since the order parameter is single valued, its phase

change around the closed path must be zero or an integral multiple of 2r.  Therefore,
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§v¢.dl =2 e (4.4.5)

where n is an integer.

Substituting egn. (4.4.4) and ( 44.5) inegn. ( 44.3) and solving for ¢, we find that the

magnetic flux enclosed in aring must be quantized, i.e.
d =nhc/2e =ndo

where ¢ =hc/2e = 2.07 x 10 " gauss - cm ? is known as flux quantum.

4.4.2HIGH TEMPERATURE SUPERCONDUCTORS (HTYS)

Extremely low critical temperatures of conventiona superconductors (the low Tc type)
put the most serious limitation on tQeir use in technological applications. Working with
devices that have to be cooled to temperatures in the range of liquid helium temperature
(4.2 K) is obviously not viable on any count. This has kept the scientists world over
relentlessly trying to discover~uperconductivity near room temperat\lre. A decisive
boost to this optimism came in 1986, when Bednorz and Muller synthesized metallic
oxygen-deficient copper oxide compounds of LaBa(Sr)-Cu~O system with the
transition temperature of about 30 K. A vigorous activity towards the search for
materials with higher critica temperatures ensued following this nobel prize winning
announcement. It has resfilted in the development of a variety of materials with the
highest critical tempe}ature T c in the vicinity of 135 K. The Tc values being so high
compared to those of conventional superconductors, these materials are called high

temprtmture supe-reonduc-tors or high T ¢ superconduct~(HTS).

15.8.1 Rare-Earth Cup rates: Structural Aspect

Chu and Coworkers (1987) earned the distinction of raising T ¢ to 90 K in ceramics of
the Ba -x Y x CUO3 -y system. With fastly improving methods of preparation of
characterization, a ceramic alloy Y 1Ba2Cu3~ -x could be prepared even in single crystal
form. In al respectsincluding application
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this has emerged as the most thoroughly studied and tested system, often referred to as YBCO.
A
Isenes of this class of HTS has been produced with the Y atom being replaced by other rare-
earth elements such as Eu and Gd. On the basis of their stoichiometry, these types of ceramics
are
commonly called 123 systems. i

The crysta structure of the YBCO system is illustrated in Fig. 15.26(a). It can be
represented by an orthorhombic primitive cell in the superconducting state. The structure
is essentially an oxygen- defect modification of the perovskite structure with about one-
third oxygen positions vacant. All members of this series are axial crystals with alternating
CUO02 planes [Cu(2), 0(2)] and oxygen atoms in both pyram-d-type and rectangular
coordination along the c-axis. Oxygen chains are formed along the b-axis with the
involvement of atoms in the rectangular planar structure. We will see alittle later that the
oxygen vacancies in this chain may be interpreted to be actively involved in the

mechanism of superconductivity.

15.8.2 Bi-based and Tl-based Cuprates. Structural Aspect

This class of HTS emerged within a year of the synthesis of 123 systems. These materias,
typically represented by Bi2Sr2Ca2Cu30,0 and T12Ba2Ca2Cu30,0 systems, show still higher T
¢' The main classes
of ceramic superconductors with Tc> 90 K are compiled in Table 15.4. In accordance with their
stoichiometry, Bi- and Tl-based HTS are named as 2212 and 2223 systems, respectively.

Similar to 123 systems, 2212 and 2223 systems too have a layered structure along the

substantially larger c-axis. This layered structure is again considered to playa crucial role in the
mechanism of superconductivity. The unit cell shown in Fig. 15.26(b) has two distinct regions,
separated by two Bi-O (or TI-O) planes. In the upper-half region, the copper atoms are located at
centres while in the lower-half region they are at comers of the Cu-O planes. The T c value is
strongly controlled by the number of CUO2 layers in the unit cell. These ceramics differ from
one another only in the number

of CUO2 layers per unit cell.
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15.8.3 Significant Properties of CuprateHTS

Consider the example of YBCO which is the most thoroughly researched system. Its
resistivity around 90 K falls most sharply to an immeasurable value for x = 0 -0.1, where x
denotes oxygen deficiency. On increasing X, the transition temperature decreases. For x >
0.7, YBCO ceramics cease to be superconductors and behave as antiferromagnetic
insulators. On account of their strongly anisotropic crystal structure, the ceramic
superconductors show highly anisotropic electronic properties. There is a large difference
in the resigtivities of YBCO, measured along and perpendicular to the c-axis (Pc and Pab in
Fig. 15.27). All the ceramic superconductors known to date show type Il superconductivity
for which Bc isusually less than 10 mT and the largest estimates of Bc are around 340 T.' 2

A few extraordinary features of these HTS that might provide clue to the mechanism of
superconductivity are as under:

1. Theresigtivity in the normal state varies linearly with temperature.

2, A near zero oxygen isotope effect is observed (a -0-0.2). The vanishingly small isotope

. effect is considered an important evidence for non-phononic superconductivity in

cuprates.
I

appreciably greater than the BCS estimate equalling 1.764.

4. The thermoelectric power shows a universal behaviour as afunction of hole concentration.
5. The Hall coefficient is temperature dependent. ' 6, An inverted parabolic relation between

T c and the hole concentration is observed.
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Insulating
layer

Bior Tl €

Cu |@°

@ &
Bi2 Srz Ca2 CU3 D!D
or
Tl, Ba, Ca, Cu; O,

(a) (b)

Fig. 15.26 (a) Unit cell structure of a'Y .Ba2Cu307 crystal. The numbers in brackets represent
the specia sites jof oxygen and copper atoms in CUO2 layers. (b) Unit cell structure of
Bi2Sr2Ca2Cu3010 or T12Ba2Ca2Cu3010 crystal.

From the data on Hall coefficient it isinferred that a Cooper pair in YBCO type and
Bi- and 'n-based superconductors, is a pair of holes resulting in the p-type
superconductivity in these materials. Because of their high electronegativity, oxygen
atoms act as electron acceptors. For example, in
YBCO, both Y and Ba ions contribute two electrons separately to the bonding in CUO2 layers

where.
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the oxygen atoms trap these electrons. For small x (i.e. for a less oxygen-deficient
composition), there are enough oxygen atoms to swallow the electrons. This way more
holes are made available in the CUO2 planes to get bound into hole Cooper pairs. These
observations point to a quasi two-dimensional charge transport in CUO2 planes by
means of holes 'bound in Cooper pairs. These ideas are also applicable to the Bi and Tl
superconductors. Although most of the cuprates show p-type

03 _
E | YBayCuy Oy, E
512-— %
E e 102 &
= $
a8 o~ =
EAN - B
. L=l a0 E
e [
0 1 I 1 L 1 0
0 100 200 300

Temperature, T (K)

Fig. 15.27 Measured resistivity of YBCO along and perpendicular to the c-axis (Paand
Pab respectively) as a function of temperature. [After SJ. Hagen. T.W. Jing, Z.Z.
Wang, J. Horvath, N.P. Ong, Phys. Rev., B37,7928 (1988).]

superconductivity, there exist a couple of systems, namely NdzCuO4 and Ndz -

xCexCuO4 in which the conventional n-type superconductivity has been confirmed.

15.8.4 Fulleranes

The novel superconductors added most recently (1991) to the list of HTS are fullerenes
whose most prominent member is C6(). The transition temperatures of materials of this
class range from 15 K to about 48 K. The structure of a single C6() molecule, as shown
in Fig. 15.28, consists of 60 carbon atoms. It is a cluster of carbon atoms arranged in
the shape of a truncated icosahedron with 20 hexagonal and 12 pentagonal faces (as in
graphite, benzene and other organic molecules). The pentagons occur on account of the

topological requirement for producing a closed structure that resembles a football.
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UNIT -1V
LESSON 2

ENERGY GAP AND RELATEED PROPERTIES OF
SUPERCONDUCTORS

Objective of the lesson

To discuss thermodynamical properties of super conductors and the concept of energy gap

Structure of thelesson
4.2.1. Thermodynamic properties

4.2.2. Energy gap

4.2.3. Electodynamics of superconductors- London equations

4.2.1. Thermodynamic properties

The superconducting transitions are reversible in nature and hence we can apply
thermodynamics for its study. By neglecting the volume changes and considering only the
magnetic work term, the Gibbs free energy can be written as

G=U-TS-M.B. (4.2.1)
A small change in applied field B, a a constant temperature produces asmall change in the free
energy given by

déG=-M.dB, (4.2.2)

where all extensive quantities are defined for aunit volume.
After substituting M = - B,/ no and integrating ( 4.2.2), we get

2
or  GyBaT)=G{0T)+ ZBa .......... (4.2.3)

Ho
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At the critical field B, where the norma and superconducting states are in equilibrium:
Gn(T) = G4B,,T)

Here, we ignore any weak magnetism in the normal state and assume that the free energy G is
independent of field. Then, from ( 4.2.3)

G(T) - G(0.T) = 285

Ho

The above relation shows that in zero field the superconducting state is lower in free energy by

B’ /2u, per unit volume. For atypica field of 0.1 -1.0 kG, thisis 10° I m’3. In the presence of

weak fields below T, the specimen has to choose between gaining in energy by forcing all the
magnetic flux out (retaining superconductivity) and gaining in energy by letting the flux in
(going to the normal state). The superconducting state is found to be energetically favoured for
small fields, but not for large fields. The experimental behaviour of free energy as a function of
temperature in the two states is shown in Fig. 4.2.1.. Making use of (4.2.3), we can estimate the
critical field B¢(T) from this graph.

—0.1 ﬁ
-0.2 r
-0.3
-0.4
—0.5F
-0.6
-0.7
—_0.8
s
-1.0
il
-1.2 |

|

0

T.=1.180K

Free energy (mJ/mol)

L 1 L L L L ~
0.5 1.0 1.5
Temperature (K

Fig. 4.2.1. Behaviour of Gibbs energy as a function of temperature in the superconducting and

normal states of a superconducting material.
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The difference of entropies is determined from (4.2.) with entropy S defined as S=—(0G/aT):

B. dB
So= ——¢ ¢ 4.2.4
= 5+Ss 1, dT (4.2.4)

Since the slope dB/dT of thecritical field curveis negative, S, > Ss revealing that the
superconducting state is a 'more ordered state' than the normal state. Also, the slope dB/dT
approaches zero at absolute zero, leading to theresult S, > Ssas T = 0, which is consistent
with the requirement of the third law of thermodynamics. Figure 4.2.2 presents a view of the

variation of entropy in the two states.

If U, and Us denote the internal energy in the normal and superconducting states respectively,

then
UrUs=T(SrS) (4.2.5)

2.0

Entropy (mJ mol I )
= =
T

@
W

L 1 1 1 1
0 0.2 0.4 0.6 0.8 1.0 12

Temperature (K )

Fig.4.2.2. Entropy of a superconducting material in the normal and superconducting states as a

function of temperature.

This gives the difference in heat capacities for a unit volume as

c.-c,=Td(s s,
dT



S
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- T#BO . ‘Z;Eic + ﬂlo(‘jjic jz .......... (4.2.6)
at T= T, B&~0, and then the above relation reduces to
C,-C, = L( dB, T .......... (4.2.7)

ﬂod_T

T=T,

This relation is known as the Rugers formula.

4.2.2. Energy gap

The energy gap in superconductors is entirely different nature from the energy gap in
insulators. In an insulator the gap is related to the lattice and in the superconductor the gap tied to
the Fermi gas. In superconductors the energy gap separates superconducting electron states lying
below the normal electron states. This gap decreases continuously to zero as the temperature is
increased to the critical temperature T.. The energy gap in insulators on the other hand separates
filled valence band and vacant conduction band and is almost independent of temperature.

The heat capacity below T. gave evidence for forbidden energy gap between normal super

conducting state.

1,

K

-1

Heat Capacity (m3J mol

Temperature (K)

Fig. 4.2.3. The variation of specific heat with temperature for a superconductor.
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Experiments at very low temperatures indicate that the specific heat of the electrons in that

region decreases exponentialy, i.e.
C =aexp[-b(T/T9)). (4.2.8)

This exponential behaviour implies the presence of an energy gap in the energy spectrum
of the electrons. This gap which liesjust at Fermi level (Fig. 4.1.4) prevents the electrons from
being readily excitable. It also leads to avery small specific heat. The

Superconducting state

0 N
Hormal state

Fig. 4.2.4 Thedensity of states versus E for a superconductor, illustrating the gap
(magnified) at the Fermi level

width of the gap A is of the order of kT, because when the substance is raised to T, it becomes

normal and its electrons are then readily excited. Thus
A~kT. (4.2.9

Substituting T, = 5 K one findsthat A ~ 10” eV. This energy gap is very small compared with
the gaps compared with the gaps of insulators or semiconductors and it is for this reason that
superconductivity appears only at very low temperatures. The critical field H. versus
temperature curve is given in Fig 4.2.4 . The curve divides the H; and T plane into two regions:
the normal and the superconducting. Suppose the substance isat temperature T, < T, . When
substance starts at point A and follows the vertical path AN, i.e., gradually increasing the filed, it

becomes normal at the point N. Thus the condensation energy is
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AE = EN - EA .......... (4210)

Since the substance acts as a perfect diamagnet along the path AN, AE is equal to the
demagnetization energy,

AE=—§HCBdM :_#OIH(—dH)=1/2/,LOHCZ .......... (4.2.11)

per unit volume. This is the amount of energy needed to convert a system from the
superconducting into the normal state or it is the amount lost by the system when it makes the
transition from normal to the superconducting state. The maximum amount of condensation
energy is

AE=Y% woHZ©0), (4.2.12)

Density of States g(E)

| E
Ep

Fig. 4.2.5 Calculation of the superconducting condensation energy

which occursat T = 0 K. Let us obtain a useful relation between the critical filed and the critical
temperature. The only fraction of the electrons, those lying within a shell KT of the Fermi
surface, is affected by the superconducting transition. This is because those eectrons lying

deep inside the Fermi sphere require much greater energy for excitation. Thus the concentration
of effective electronsis

Nefif =N (ch/EF),
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where n is the total concentration of conduction electrons. Each of the effective €ectrons

acquires an additiona energy of about KT in order to be excited across the gap. Therefore
AE = ng KTe=n[ KT)YE], el (4.2.14)

which is the same as the energy calculated in egn ( 4.2.8). Equating these energies, one
finds that

H{0) = @nk¥poE) ¥’ T, L (4.2.15)

That is, the critical field is proportional to the critical temperature. Thus the higher the transition
temperature, the greater the field required to destroy superconductivity. The egn (4.2.15) can be

used to estimate H¢(0) if T isgiven or vice versa

4.2.3. Electodynamics of super conductors- L ondon equations

The Meissner effect did not account for the flux penetration observed in thin films. To explain
this phenomenon F. London and H. London, in 1935, modified the conventional equations of

electrodynamics.
The equation of motion for a superelectron in the presence of an electric field is

Moo eg (4.2.16)

dt

m

The density of the supercurrent Jsis given by
Js =- e ns Vs .......... (4217)

Taking the time differentia both sides we get

Dy P (4.2.18)
d d

from eqgns (4.2.16) and (4.2.18), we can write

dJ,
dt

= (nse2 /me (4.2.19)
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In the steady state, the current in a superconductor is constant, i.e.,

A, =0 (4.2.20)

dt

It meansin the steady state the electric field inside a superconductor vanishes or the voltage drop
across a superconductor is zero.

Combining egn. (4.2.20 ) with the Maxwell equation,

B

P o VxE, (4.2.21)
ot

a_B:O_
t

gives,
This states that the magnetic field is constant regardless of the temperature. But we know that
the flux suddenly penetrates when temperature is increased toward T, . So the above formalism
requires some modification. For this, let us substitute for E from egn. (4.2.19) into egn.
(4.2.21), which yields
oB _ m dJ

2 - VX — 4.2.22
ot (nsez) dt ( )

Since thisequation isinvalid, because it predicts that % = 0, London postul ated the relation as

B= —( mZ] vxJds (4.2.23)
n.e

and is called as the London equation. This equation is in agreement with the experimental

results. We can expressit in another way by using the Maxwell equation,
VXB= Ho \]s
and taking the curl on both sides, we get

VXVXB=V(V.B)-V?B=-V?B=py VXxJs  .oerooe. (4.2.24)
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substituting for Vx Js from egn (4.2.23), we obtain

VB= (wns€/mB. (4.2.25)

Fig. 4.2.6.

Let us apply it to a simple geometry (see Fig. 4.2.6). The specimen surface is lying in the yz-
plane and the filed is applied in the y-direction. For this geometry, theegn . (4.2.25) reducesto

0°B

ox?

Y = (o ns e2/m) By (4.2.26)

The solution of this equation is
B, =B,0e* . (4.2.27)
where A= (uons€/m? (4.2.28)

Eqgn (4.2.28) shows that the field decreases exponentially as one goes from the
surface into the superconductor. Thus the magnetic field vanishes inside the bulk specimen, this

is in agreement with the Meissner effect. The parameter A known as the London penetration
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depth, which represents the distance of the field penetration into the specimen. This has been
verified experimentally.

4.2.4 Summary of thelesson

The variation of entropy with the temperature of superconductor and its comparison with
the normal conductors is discussed. The origin of the energy gap and its related properties of the
superconductor are explained in detail. The equation for the London penetration depth is
derived.

425 Key Terminology
Entropy— specific heat — Gibbs free energy — energy gap.

4.2.6 Sef —Assessment questions
1. Obtain the expression for Gibbs free energy of a super conductor .
2. Discuss variation of specific heat with temperature and the prediction of the energy gap
of a superconductor

3. Derive the London equation and explain the term London penetration depth.

4.2.7 Reference Books

Elementary Solid State Physics by M.A. Omar

Elements of Solid State Physics by J.P. Srivastava

Solid State Physicsby Neil W. Ashcroft and N. David Mermin
Introduction to Solid State Physics by Charles Kittel
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LESSON 3

Josephson effect and its consequences

Objective of the lesson
To discuss concept of Josephson effect,

Structure of the lesson
4.3.1. Tunneling and Josephson effect

4.3.2 Supercurrent quantum interference

4.3.1.Tunndling and Josephson effect

When a thin insulating layer ( about 30 A°) is sandwiched between two metals (Example, Al-
Al,03-Pb) , it acts as potentia barrier as far as the flow of conduction electrons is concerned.
Quantum mechanically electrons can tunnel across a thin potentia barrier and in thermal
equilibrium they continue to do so until the potential of electrons in both the metals become
equal. When both the metals are normal conductors ( Fig.4.3.1 a) and if a potential differenceis
applied across them, the potential of one them increases with respect to other. As a result
electrons tunnel through the insulating layer. The current-voltage relation across tunneling
junction is observed to obey Ohm's law at low voltages(Fig.4.3.1 b). However, when one of the
metals is a superconductor (Fig.4.3.1 c), no current is observed to flow across the junction until
the potential reaches a threshold value, eV = A/2 ( half of the energy gap ). It is because the
energy states lying horizontaly below Er in the norma metal are already occupied. Further,
since the Fermi level Fr isthe same
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Insulating layer I

~_7 y

Normal metals
Fig4.31a Fig4.3.1.b
. Te=T
Insulating layer Insulator I [
— W4 |EWQT\_Ei; o J 1=K
Super Conductor Normal vV
metal
0=T=Tc
Fig4.3.1c Fig4.3.1d Fig4.3.1le

throughout the system and lie in the middle of the energy gap of the superconductor, the
knowledge of the threshold voltage helps in determining the energy gap of the superconductor.
As the temperature is increased towards T. , the threshold voltage decreases. The current-
voltage relations across the tunnelling junctions at different temperatures are shown in
Fig.4.3.1e. This tunnelling is called single eectron tunnelling (or normal tunnelling) , where
electrons tunnel in singles through the insulated layer. When both the materiads are
superconductors (Fig.4.3.1 d ), Josephson predicted that in addition to single electron tunnelling
, Cooper pairs not only can tunnel through the insulating layer from one superconductor to
another without dissociation, even at zero potentia difference across the junction, but also their
wave functions on both sides would be highly correlated. This is known as Josephson effect.
The introduction of the insulating layer between two superconductors develops a phase

difference. Josephson showed that the tunnelling current is given by

I =1oSn ¢ (4.3.1)
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Where | is the maximum current that the junction can carry without a potential difference
across it and depends on the temperature. With no applied voltage, a dc current will flow
across the junction. Thisis called dc Josephson effect. A dc magnetic field applied through a
superconducting circuit containing two junctions causes the maximum supercurrent to show
interference effects as a function of magnetic field intensity. This effect can be utilized in

sensitive magnetometers.
Ac Josephson effect : A dc voltage applied across the junction causes rf current oscillations
across the junction. This effect has been utilized in a precision determination of the value of
hle. Further, an rf voltage applied with the dc voltage can then cause a dc current across the

junction.

The detailed theory concerning this tunnelling phenomenon is discussed below.

a) Dc Josephson effect.

Our discussion of Josephson junction phenomena follows the discussion of flux quantization.

Let v, be the probability amplitude of electron pairs on one side of ajunction, and let Y5 be
the amplitude on the other side. Let both superconductors be identical and we assume that they
are both at zero potential. The time-dependent Schrodinger equation 7oy /ot =Hy applied

to the two amplitudes gives
el el
in—L=hT in—2=nTy, .oee.. 4.3.2
ot vV, ot v, ( )

Here iT representsthe effect of the eectron-pair coupling or transfer interaction across the

insulator; T has the dimensions of arate or frequency. It is ameasure of leakage of v, into the

region 2 and of y, intotheregion 1. If theinsulator is very thick, T is zero and there is no pair

tunnelling.
Let y,= nj?e™and y,=n}?e% . (4.3.3)
W _ in % ¢ n v, 90, _ “iTy, e (4.3.4)

ot ot ot
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8(// -1/ izan . 892 .
#:%nzlze" #Hy/z = =Tw

Multiplying equn. (4.3.4) by n}’> e+ and equn.(4.3.5) by n}'? e "2, we obtain,

18n1 . 891 . 1 s

——l4in —=2=-iT(nn,)2e° ... 4.3.6

20 ot (nun.) (439

1on, . 00, . L s

——24in,—2=—T(nn,)ze™ ... 4.3.7

20 %ot (nun.) (39
where § =0,-9,

Equating thereal and imaginary parts of (4.3.6) and (4.3. 7), we get

on,

M oT(nyn,)isinG ; M oT(n) G e (4.3.8)
ot ot

90, _ 1P| coss % o 1M coss (4.3.9)
ot n ot n,

If ny = ny asfor identical superconductors 1 and 2, we have from (4.3. 9) that

a6, _ 0,

0
-2 o ~Z0,-6)=0 ... 4.3.10
ot ot 8t( 2~0) ( )

From (4.3. 8) we see that

on, on

221 . 4311
ot ot ( )
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The current flow from region 1to region 2 is proportional to on,/dt or, the same thing,
—on, /ot. We therefore conclude from (4.3.11 ) that the current J of superconductor pairs
across the junction depends on the phase difference 6 as

J=J,8n8=3,8n0,-60,) el (4.3.12)

where J, is proportional to the transfer interaction T. The current Jy is the maximum zero-voltage
current that can be passed by the junction. With no applied voltage a dc current will flow across
the junction (Fig. 4.3.2), with a value between J, and —J, according to the value of the phase
difference 6,-0,. Thisisthe dc Josephson effect.

Current

, Voltage

/]

Fig.4.3.3. Current voltage characteristics of Josephson junction

Ac Josephson effect

Let adc voltage V be applied across the junction. We can do this because the junction is
an insulator. An electron pair experiences a potential energy difference gV on passing across the
junction, where g=-2e. We can say that a pair on one side is at potential energy —€V and a pair
on the other sideisat eV. The equations of motion are
indy, ot =hTy,—eVy, ; ihoy,/ot=hTy,+&Vy, .......... (4.3.12)



IM.Sc. Physics 6

Josephson effect and its consequences

Adopting the similar procedure as in the case of d

17 14in % =ievni*—iT(nn,):€?

the real part of the equation (4.3.13) gives

on 1
8—;: 2T(nyn,)? siné

and the imaginary part gives,

% =(eV/#)-T(n,/n,): coss

which differsfrom (4.3.8 ) by theterm eV/h
Further, by aextension of (4.3.7 ), we have

8n . 80 . _ . 1
%6—:+|n26—t2=|eVn2h L_iT(nn,) €™
whence

on, /ot =—2T(nn,)? sins
00,

- —(ev/#n)-T(n,/n,): coss

From (4.3.17 ) and (4.3.18 ) with n;=zn, we have

¢ Josephson effect , we get

.......... (4.3.14)

.......... (4.3.15)

.......... (4.3.16)

.......... (4.3.17)

.......... (4.3.18)
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0 0,-0,)= % =2eV/h....... (4.3.19)

ot
By integrating egn.(4.3.19 ) that with a dc voltage across the junction the relative phase of the

probability amplitudes vary as
5(t)=5(0)—(2evt/n) ... (4.3.20)

The current is now given by

J=J,sin[6(0)-2evt/n] ... (4.3.21)

The current oscillates with frequency
w=2eVIn (4.3.22)

This is the ac Josephson effect. A dc voltage of 1 micro voltage produced a frequency of 483.6
MHz. Further the equ.4.3.11 says that a photon of energy 2 eV is emitted or observed when an
electron crosses the barrier by measuring V and o , we can obtain the precise values of €/ 71 .

The physical explanation of this tunnelling can be explained as follows. For the two
superconductors having different gaps, the Fermi level is in the middle of the gap. The energy
level diagram at thermal equilibrium is aw shown in Fig. 4.3.4 a. . There are some electrons
above the gap and holes below the gap in superconductor | . Such charge carriers can hardly be

found in superconductor I1, because of its large energy gap.
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Figure 4.3.4. Energy diagram for two different superconductors separated by athin
insulator (a) V=0, (b)V = (A2 Aj)le (© V=( A1t Ay)le

When a voltage is applied, a current will flow and will increase with voltage(Fig.4.3.5) .Since
more and more number of thermally excited electrons in superconductor | can tunnel through the
insulator into the available states of superconductor Il . When the applied voltage reaches A,- A;
(Fig.4.3.4b) . It is energetically possible for al thermally excited electrons to tunnel across. It the

voltage is increased further the current decreases, because the number of electrons capable of
tunnelling is unchanged. But they now face a
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1A /

Figure 4.3.5 Current-voltage characteristics of a Josephson junction. Thereis anegative

resistance (Ax- Aj)le<V < (A1t Ay)le

lower density of states. When the voltage becomes greater than A,+ Aj, the current increases
rapidly because the electrons below the gap begins to flow(Fig.4.3.4c). Basing on these
explanations dc Josephson effect can now be defined as the phenomenon in which the junction
permits the flow of current without any net loss of energy, even if the potential difference across
it is zero, which is a familiar one in quantum mechanics. But the new thing is that as explained
above, if we apply a dc voltage V across the junction the result is an aternating current-the
constant voltage generates an oscillating current with a frequency  =2eV /h as explained
above. Thisisthe ac Josephson effeect

4.3.2 Supercurrent quantum interference

The Josephson tunneling in the presence of a magnetic field provides strong evidence
for the highly coherent nature of the superconducting state. Two Josephson junctions
arranged in a paralel combination are placed in a region which a magnetic field B is
impressed as shown in Fig. 4.3.6. A supercurrent starting in region | if divided into two parts
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and made to flow along parallel paths, each of which contains atunnel junction. The currents
la and 1, crossing the tunnel barriers 'a and 'b', respectively, reunite in region Il. The
combined current shows oscillations characteristic of an interference pattern produced by
two coherent sources. By anaogy with the interference of light, Iand |, are regarded as two
coherent sources of current whose disturbances, when superposed by the way of

recombination, produce an interference pattern.

Tunnel barrier
Superconductor

A
F Erratetiteotaee S Sl b e St o 1
t I
L i
¥
0 X xX OxX X X :
! i
E.. /] (
[ - == X X B O x x e adate s 2 | |

{ i
: X X X X X 1

1
[ — I
I - 1
TR = EEaEm et e 4

: A

o |

Superconductor
Fig. 4.3.6. Experimental geometry for producing supercurrent quantum interference.

As seen in the ac Josephson effect the tunnelling of Cooper pairs causes a phase shift of
the total wavefunction of the superconducting state in region |l relative to that in region I.
The phase difference 6,-6, around a closed curve which encompasses the total magnetic flux

isgiven by
2e 2e
0,-01- —¢p=—1|BdAS ... 4.3.28
201 — ¢ - I ( )

Let the phase difference between points | & Il taken on a path through junction a be 6, When
taken on a path through junction b, the phase difference is dp. in the absence of magnetic field
these two phases must be equal. Now let the flux ¢ pass through the interior of the circuit than
from the egn. (4.3.28), we have and The above relation states that the total phase difference
around the loop can be controlled by varying the magnetic field. The general expressions for 5,
and dy, in (4.3.24) may, however, be put as

da= dg - (§]¢ ......... (4.3.29a)
hc
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2e
8y = 8o + [%jcb ......... (4.3.29)

the total current is some of J,and J,. The current through each junction is

Jrom = Jo [SiN (S0 + (e}p + 8N (8o - (e}p 1= 2 sin & co{ i¢] ..(4.3.30)
hc hc hc
The cosine interference term characterizes the total current. This phenomenon is called

the super current quantum interference. Its maxima are determined by the condition,

L4 =s0, ..(4331)
Ac

where sis equal to integer

This condition states that for every addition of a flux quantum to the enclosed flux, a
new maximum appears. The total supercurrent is plotted as a function of magnetic field in Fig.
4.3.6 to demonstrate the quantum interference where each oscillation corresponds to a change
of flux quantum. Based on this principle, extremely sensitive magnetometers have been
developed. Even extremely weak magnetic fields such as those produced by currents in human
brain can be measured with these magnetometers. This magnetometer is called a SQUID
(Superconducting Quantum Interference Device).

Josephson current (arb. units)

AP RN I (Y [ ] [N N Bd |
-5 -4 3 -2 -1 0 1 2 3 4 5

Magnetic field B(10™ tesla)

Fig. 4.3.6 Tota supercurrent in region Il asafunction of magnetic field
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4.3.3 Summary of the lesson
The phenomena of D.C and A.C Josephson effects have been discussed in detail. The

concept of quantum interference as a consequence of Josephson Effect has also been described.

4.3.4 Key Terminology

Josephson junction- D.C and A.C Josephson effects —supercurrent quantum interference

435 Sdf —Assessment questions

1. What is Josephson effect? Discussin detail D.C and A.C Josephson effects.
2. Write anote on supercurrent quantum interference.

4.3.6 ReferenceBooks:

Elementary Solid State Physics by M.A. Omar

Elements of Solid State Physics by J.P. Srivastava

Solid State Physicsby Neil W. Ashcroft and N. David Mermin
Introduction to Solid State Physics by Charles Kittel.
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