
UNIT –I

LESSON-I

DIELECTRIC PROPERTIES OF INSULATORS

Objective of the lesson

To introduce the basic definitions in the theory of dielectrics like dipole, dipole

moment, polarization, polarizability and sources of polarization etc. To give the classification

of polarisations and to discuss the theory of orientation polarisation

Structure of the lesson

1.1.1. Introduction

1.1.2. Sources of Polarizability:

1.1.1. Introduction

Dielectrics are insulators i.e., non-conductors of electricity. The function of any

insulator is to prevent the flow of electricity through it when a potential difference is applied

across its ends. These materials prevent the leakage of electrical charges in electrical

devices. Substances like bakelite, PVC used in electrical wiring and pipes, polymer materials

etc., come under this category. Dielectrics possess high resistivity values in the range 106 -

m to 1016 -m. Under high voltage bias, they allow very little current (10-6 A to 10-14 A).

They withstand very high voltages. The conduction phenomenon in dielectrics is mostly

associated with ionic motion through defects or hopping of charges. They have no free

charges. They consist of positively and negatively charged particles bound together. The

fundamental action of the electrical field is to separate positive and negative charges of the

entire volume of the dielectric, causing what is known as the polarization of the dielectric.

Fig.1.1.1 shows the effect of polarization in a dielectric when external field E0 is applied on a

dielectric. We see that the net polarization charges produced at the faces of the dielectric, a

positive charge on the right and a negative on the left; inside the medium there is no excess

charge in any given volume element. The medium as a whole remains neutral, and the

positive charge on the right is equal in magnitude to the negative charge on the left. These

induced charges create their own electric field Ep called polarization field that is directed to

the left, and thus oppose the external field E0. When we add this polarization field Ep to the

external
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Fig.1.1.1 Effect of polarization in a dielectric.

field E0, so as to obtain the effective field E, we find that E < E0. Therefore, effect of

introducing insulating substance (i.e., dielectric) results in reduction in applied field or

reduction in surface charge density. Thus, the polarization of the medium reduces the

electric field in its interior. During the polarization the charges in the dielectric are displaced

from their equilibrium positions by distances that are considerably less than atomic diameter.

There is no transfer of charge over macroscopic distances such as occur when a current is set

up in a conductor.

Dielectrics: Dielectrics are the insulating materials having electric dipoles permanently or

temporarily by inducement during the application of electric field.

Electric Field Strength or Intensity (E): The space around the charged body, up to where

its influence felt is called Electric Field. Suppose an additional infinitesimal test charge q0 is

brought into the electric field and at a certain point in it, it experiences an electrostatic force

F. The electric field strength or intensity E at the point is a vector and defined by

E =
0q

F
volt/metre (1.1.1)

Electric Field Induction (or) Flux density (or) Displacement Vector (D): Consider a

charge q at the centre of a sphere of radius r. The charge q will send q lines of force and this

will be received by surface area 4 r2. The number of electric lines of force received by a

unit area is called flux density or electric displacement D.
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i.e.,
A

q

r

q
D 

24
; where A is the surface area of the sphere,

The unit of electric flux density is coulomb/metre2.

Electric dipoles: The system of two equal and opposite charges separated by certain

distance is called electric dipole.

-q - - - - - - -p +q

Fig.1.2.1 An electric dipole

Electric Dipole moment: The product of any one of two charges of dipole and the

separation between them is called electric dipole moment.

Let the two charges are +q and –q separated by a distance r. The moment of this

dipole is defined as

p = qr (1.1.2)

The dipole moment is therefore equal to the magnitude of the one of the charges times the

distance between them. The unit of electric dipole moment is esu-cm (10-18 esu-cm = 3.3 x

10-30 C-m = 1 debye)

Polarization (P): The process of producing electric dipoles out of neutral atoms and

molecules is known as polarization. Polarization P in a solid is defined as the total dipole

moment per unit volume:

P =
V

rq

p n
ii

n
i


  (1.1.3)

Here P is the total dipole moment (including the induced and permanent) and n is

the number of dipoles per unit volume. Polarization P has the same units as the

surface charge density (C-m-2). This equivalence is substantiated by the fact that

electric field induces charges on the surface of the dielectric and the density of

charges is a measure of the extent of polarization.

Dielectric Constant: Dielectric constant or relative permittivity is defined as the ratio of

permittivity of the substance to the permittivity of the free space,



M.Sc. Physics Dielectric properties of insulators4

Consider a parallel plate capacitor consisting of two plane parallel plates of area A

and separation d, charged with a surface charge density . If the space between the plates is

vacuum and if d is small compared with the dimensions of the plates, there will result an

electric field between the plates, whose strength is given by

Evac = 4

in esu. The potential difference between the plates is equal to

Vvac = Evac d

and the capacitance of the capacitor is defined by

Cvac =
vacV

A
.

Suppose now that the space between the plates is filled with an insulating substance the

charge on the plates being kept constant. The new potential difference V is lower than Vvac

and the capacitance is increased.

The static dielectric constant  is then defined by

 =
V

Vvac =
vacC

C

Thus, the field strength is reduced from the value Evac to the value E, where

E

Evac = 

or Evac = D =E (1.1.4)

or, in other words, the effective surface charge density on the plates is now changed from  =

4
vacE

to l =
4

E
.

The effect of introducing the insulating substance is thus to reduce the surface charge density

by an amount

 - l =
4
vacE

-
4

E
= ( - 1)

4

E
(1.1.5)

Since the charge on the plates is being kept constant, the positive plate thus acquires a

negative induced surface charge density ( - l) and vice versa; whole of the dielectric

becomes a single dipole of moment ( - l)Ad. Under this condition, and using equation

(1.1.3) we see that ( - 1) = P. Thus, the quantity on the left hand side of the of equation

(1.1.5) is the polarization of the dielectric and we can write



Acharya Nagarjuna University Centre for Distance Education5

P = ( - 1)
4

E
(1.1.6)

The above explanation of the induction of charges at the surface of the dielectric is in

accordance with that considered earlier.

From equations (1.1.5) and (1.1.6) we may write

D = E + 4 P = E (1.1.7)

Dielectric constant expresses the properties of the medium: all dielectric and optical

properties of the medium are contained in this constant.

Susceptibility (  ): It is defined as polarization per unit electric field.

E

P
 ;

It measures the amount of polarization a given field produces. In empty space P=0,  = 0, 

= 1.

Polarizability (): The strength of the induced dipole moment an atom acquires is directly

proportional to the strength of the external applied field

i.e., p  E

p = E

where  is known as dielectric polarizability. We can relate polarizability , which is an

atomic property to the macroscopic property polarization P. It has the dimensions of volume.

1.1.2 Sources of polarizability:

Polarization occurs due to several microscopic mechanisms. Polarization is a consequence of

the fact that when an electric field acts on a molecule/atom, its positive charges (nuclei) are

displaced along the field while the negative charges (electrons) in a direction opposite to that

of the filed. The opposite charges are thus pulled apart and the molecule is polarized. The

displacements of electrical charges result the formation of dipoles. Particularly in d.c.

electric fields, the macroscopic polarization vector P is created by three types of mechanisms

and hence polarization can be broadly classified into three types:

1. Electronic Polarization

2. Ionic Polarization

3. Orientational Polarization
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1.1.2 (a) Electronic polarization: Electronic polarization is due to displacement of charge

centers of electron cloud (negative charge center) and nucleus (positive charge center) of an

atom in the presence of an applied electric field.

Although we are interested in the dielectric properties of solids, it will be useful to

consider first the much simpler problem of the behaviour of free atoms and molecules in an

external field.

Consider an atom of a dielectric material such that its atomic number is equal to ‘Z’

and atomic radius ‘r’. The centers of gravities of charges of electron cloud and positive

nucleus are at the same point and hence there is no displacement. Suppose if the atom is

placed in a d.c. electric field of strength ‘E’, the nucleus and the electron cloud experiences

Lorentz forces of magnitude “ZeE” in opposite directions. i.e., nucleus and electron cloud are

pulled apart, therefore an attractive coulomb force develop between them. When the Lorentz

force and coulomb attractive forces are equal and opposite, there is a new equilibrium

between the nucleus and the electron cloud of the atom and hence dipole is formed. Let the

distance of separation between the centers of the displaced nucleus and electron cloud is ‘d’.

Fig. 1.1.3 An atom without any field and with field.
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Therefore, Coulomb force of attraction, Fc

2

d].radiusofspheretheinenclosedZe.[charge

d


3

22

32

3.

r

deZ

rd

ZedZe
Fc







Lorentz force of repulsion experienced by the electron due to applied field ‘E’ is

ZeEFL 

In equilibrium condition,

ZeE
r

deZ



3

22

3r

Zed
E 

E
Ze

r
d

3



 d  E

i.e., the separation between the two charge centers is proportional to the applied field ‘E’.

The induced electric dipole moment,

p = Zed = r3E, (1.1.8)

and the induced polarizability

e =
E

p
= r3 (1.1.9)

Hence, e has the dimensions of a volume. It is also evident that in general atoms with many

electrons tend to have a larger polarizability than those with few electrons. Electrons in the

outer electronic shells will contribute more to e than do electrons in the inner shells, because

the former are not so strongly bound to the nucleus as the latter. Positive ions therefore will

have relatively small polarizabilities compared with the corresponding neutral atoms: for

negative ions the reverse is true. Few examples of e are given in Table 1.1.1.
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Table 1.1.1 Electronic Polarizabilities of some atoms and ions.

Atoms e

(10-24cm3)

Positive

ions

e

(10-24cm3)

Negative

ions

e

(10-24cm3)

He

Ne

Ar

Kr

Xe

0.29

0.39

1.62

2.46

3.99

Li+

Na+

K+

Rb+

Cs+

0.02

0.22

0.97

1.50

2.42

F-

Cl-

Br-

I-

0.85

3.00

4.13

6.16

1.1.2 (b) Ionic polarization: Ionic polarization is due to the displacement of positive ion

and negative ion of a molecule in the presence of an applied electric field and occurs in ionic

crystals. One might suppose that an ionic crystal would possess polarization even in the

absence of an electric field, since each ion pair constitutes an electric dipole. But this is not

so, because the lattice symmetry ensures that these dipoles cancel each other every where.

So, the polarization in ionic crystals arises due to the fact that the ions are displaced from

their equilibrium positions by the force of the applied electric field.

Consider an ionic compound composed of positive and negative ions separated by

inter atomic distance, ro, then the dipole moment is ‘ero’ in the absence of applied field.

When the field E0 is applied to the molecule, the positive ion is displaced in the direction of

field and negative ion is displaced in opposite direction until ionic bonding forces stop the

process. Thus the dipole moment increases.

Due to the ionic displacement the resultant dipole moment increases and is given by

p = e (x1 + x2)

ro

rox1 x2

E

(b)

(a)
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where x1 is the shift of positive ion and x2 is the shift of negative ion with respect to their

equilibrium position.

Due to the application of static electric field E0, the force produced may be taken as

F newtons and the restoring force on positive ion is 1x1 and the restoring force on

negative ion is 2x2. Here 1 and 2 are restoring force constants which depend upon the

mass of ion and angular frequency of the molecule in which ions are present.

Therefore, under equilibrium

F = 1x1 = 2x2

x1 =
2
0

0

1  m

eEF
 (1.1.10)

where m is the mass of the positive ion and

F = eE0 and 1 = m0
2

Similarly, for negative ion

x2 =
2
0

0

M

eE
(1.1.11)

where M is the mass of negative ion.

Therefore, (x1+x2) =
2
0

0



eE










Mm

11
(1.1.12)

And dipole moment

p = e(x1+x2) =
2
0

0
2



Ee










Mm

11
(1.1.13)

Therefore, ionic polarizability

i =
0E

p
=

2
0

2



e










Mm

11
(1.1.14)

Thus ionic polarizability i is inversely proportional to the square of the natural frequency of

the ionic molecule and to its reduced mass where reduced mass

1
11













Mm
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1.1.2( c) Orientational Polarization: Orientation polarization is due to the alignment

of dipoles of polar molecules in the presence of applied electric field. Polar molecules have

permanent dipole moments even in the absence of an electric field. These polar molecular

dipoles are randomly distributed in space in the absence of an electric field and hence the net

dipole moment of the dielectric is zero. But when dielectric is kept under electric field, the

field produces a torque in individual dipoles and there is a tendency for the field to align

dipole with the field and a net dipole moment per unit volume is originated in the dielectric.

If the field is strong enough, the dipoles may completely be aligned along the field direction.

The polarization due to the orientation, i.e, orientational polarizability ‘ o’.

E=0 E

(a) (b)

dipoles in the dipoles in the

absence of ‘E’ presence of ‘E’

Fig. 1.1.5 Orientational polarization.

Consider for example, a gas containing a large number of identical molecules, each with a

permanent dipole moment p. Without an external field, the dipoles will be oriented at

random and the gas as a whole will have no resulting dipole moment. An external field E

will exert a torque on each dipole and will tend to orient the dipoles in the direction of the

field.

Fig. 1.1.6 Torque applied by a field on a dipole.

eE


E

eE
-e

+e
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On the other hand, the thermal motion of the dipoles will counteract this ordering influence

of the external field. Therefore, an equilibrium state will reach in which different dipoles

will make zero to  radian angles with the field direction, producing a net polarization in the

direction of the field. It is this polarization that we are going to calculate.

Let us define the potential energy of a dipole making a 900 angle with the external

field as zero. The potential energy corresponding to an angle  between p and E is equal to

–p E cos = p.E

According to statistical mechanics, the probability for a dipole to make an angle

between  and +d with the electric field is then proportional to

2 sin  d exp[(pE cos )/kT]

where 2 sin  d is the solid angle between  and +d. The number of dipoles having their

orientation between  and +d is also proportional to this probability. Now a dipole of

moment p making an angle  with the field direction contributes to the polarization a

component p cos . Hence the contribution made by the above number of dipoles is

p cos . 2 sin  d exp[(pE cos )/kT]

and the average contribution per dipole p is given by

p =
 












0

0

]/)cosexp[(sin2

]/)cos(expsin2cos

kTpEd

kTpEdp

(1.1. 15)

( = 0 corresponds to parallel alignment and  =  corresponds to anti parallel alignment of

dipoles).

Dividing numerator and denominator by 2 and letting

a =
kT

pE
, x = a cos , dx = -a sin d,
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equation (1.1.15) can be written as

p =







a

a

x

a

a

x

dxea

dxexp

p

p
=

aee

ee
aa

aa 1









= coth a -
a

1
= L(a) (1.1.16)

The function L(a) is called the Langevin function, since this first derived by Langevin in

connection with the theory of paramagnetism. In Fig. 1.1.7 L(a) has been plotted as a

function of a = pE/kT. As a increases, the function continues to increase, approaching the

saturation value unity as a   . This situation corresponds to complete alignment of the

dipoles in the field direction.

Fig. 1.7. The Langevin function L(a). For a<<1, the slope is 1/3
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Fig. 1.1.7. Langevin function L(a) verses a

(1/3)a
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As long as the field strength is not too high and the temperature is not too low, the situation

may be strongly simplified by making the approximation a<<1 or
kT

pE
<<kT. Under these

circumstances the Langevin function L(a) = a/3, so then from equation (1.1.16)

p

p
= L(a) =

3

a
=

kT

pE

3

E
kT

p
p

3

2

 (1.1.17)

Hence, orientational or dipolar polarizability

o =
kT

p

E

p

3

2

 (1.1.18)

Hence, orientational polarizability o decreases with temperature. Since higher is the

temperature, greater is the thermal agitation and lower is ‘ o’

A large number of molecules have polarizability, yet not all the molecules. The

deciding factor for its existence is simply whether or not the molecules have a permanent

moment. The existence of a permanent moment is purely a matter of molecular geometry.

For example, CO2 has no permanent moment at all, because its atoms are in line. On the

other hand different geometry of H2O molecule gives p=1.87 Debye units to it.

It may be noted that equation (1.1.18) is actually applicable to liquids and gases,

because only in these substances the molecular dipole moment may rotate as continuously

and freely as has been assumed in its derivation. In solids, a dipole may hop back and forth

between certain discrete orientations in a manner which depends on the temperature and the

electric field. Yet the dipolar polarizability for solids has been found to be of the same form

as the result (1.1.18), expect for a numerical factor.

1.1.3 Summary

Physical quantities involved in the theory of dielectrics are defined. Various sources of

polarization are discussed. Details of three types of polarizations are discussed at in depth.
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1.1.4 Key-Terminology

Dielectrics-dipole-dipole moment—polarization-polarizability-dielectric constant-sources of

polarization.

1.1.5 Self-Assessment Questions

1. What do you mean by polarization of a solid? Explain polarizability of atoms and

molecules. Discuss different sources.

2. Obtain expressions for electronic, ionic and dipolar polarizability of a dielectric material.

3. Discuss the classification solids on the basis of dielectric polarization.

1.1.6 Reference Books

1. Solid State Physics- A.J.Dekker (Macmillan India Limited).

2. Elements of Solid state Physics- J.P.Srivastava ( Prentice-Hall of India, New Delhi).



UNIT –I

LESSON-2

DIELECTRIC PROPERTIES –STATIC ELECTRIC FIELD

Objective of the lesson

 To discuss Dielectric constant of gases with examples.

 To give the reasons for the arise of local field and its calculation.

 To Discuss static dielectric constant of gases and solids

 To derive Classius –Mossotti equation

Structure of the lesson

1.2.1 Introduction

1.2.2 Static Dielectric Constant of Gases

1.2.3 Internal Field or Local Field

1.2.4 The Clausius-Mossotti Relation

1.2. 5 The static dielectric constant of solids

1.2.1 Introduction

In this chapter how the internal field influences the dielectric constant is described in

detail. The Classius –Mossotti relation that connects dielectric constant with the

polarizabilities is also derived

1.2.2 Static Dielectric Constant of Gases

We are now in a position to give an atomic interpretation of static dielectric constant

of a gas. It will be assumed that the number of molecules per unit volume is small enough so

that the interaction between them may be neglected. In that case, the field acting at the

location of a particular molecule is to a good approximation equal to the applied field E.

Suppose the gas contains N molecules per unit volume; the properties of the molecules will

be characterized by an electronic polarizability e, an ionic polarizability i, and a permanent

dipole moment p. From the discussion in the preceding two sections it follows that, as a

result of the external field E, there will exist a resulting dipole moment per unit volume:

P= N(e + i + p2/3kT)E (1.2.1)

Note that only the permanent dipole moment gives a temperature dependent

contribution, because e and i are essentially independent of T. If the gas fills the space
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between two capacitor plates of area A and separation d, the total dipole moment between the

plates will be equal to

M = PAd

This simple relation shows immediately that the same total dipole moment would be obtained

by assuming that the dielectric acquires an induced surface charge density P at the boundaries

facing the capacitor plates, as discussed in section 1.1.1. Hence the quantity P introduced in

moment per unit volume is identical with the quantity P introduced in section 1.1.1, where it

represented the induced surface charge density at the dielectric-plate interface. Therefore,

combination of (1.2.1) and (1.1.6) leads immediately to the Debye formula for the static

dielectric constant of gas.

P = ( - 1)
4

E
= N(e + i + p2/3kT)E

(-1) = 4P/E = 4N(e + i + p2/3kT) (1.2.2)

As an example of an application of this formula, the temperature dependence of some

organic substances in the gaseous state is shown in Fig.1.2.8. The values of ( – 1) versus

the reciprocal of absolute temperature have been plotted, leading to straight lines, in

agreement with formula (1.2.20). From the slope of the lines and knowledge of the number

of molecules per unit volume, the dipole moment p may be obtained. Also, form the

extrapolated intercept of the lines with the ordinate, one can calculate (e+i). The

determination of dipole moments has contributed a great deal to our knowledge of molecular

structure. For example, CCl4 and CH4, according to Fig. 1.2.8, do not possess permanent

dipole moments (indicated by zero slope), in agreement with the symmetric structure of these

molecules. Similarly, the fact that H2O has dipole moment of 1.84 Debye units, whereas CO2

has no dipole moment, indicates that CO2 molecule has a linear structure, whereas in H2O the

two OH bonds must make an angle different from 1800 with each other.
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1.2.3 Internal Field or Local Field

In solids a molecule or atom experiences not only the external field, but the fields produced

by the dipoles as well. As a result of the long range of Coulomb forces, the later contribution

cannot be neglected. This resultant field is called the local field, and is responsible for

polarizing individual molecules or atoms of solids.

To calculate the local field, we follow the method suggested by Lorentz. According

to this method, we select a small spherical region from the dielectric with the atom for which

the local field must be calculated at the centre. The radius of the sphere is chosen large

enough to consider the region outside the sphere as a continuum whiles the region inside the

sphere as the actual structure of the substance. We suppose that, placing it in a uniform

electric field between two oppositely charged parallel plates has uniformly polarized the

given dielectric.
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Fig. 1.2.2 Illustrating the calculation of the internal field as described in the text

Fig 1.2.1 Temperature variation of the static dielectric constant of some vapours.
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Now, since the part of the dielectric external to the sphere may be replaced by a system of

charges induced at the spherical surface as shown in Fig. 1.2.1, the electric field at the center

of the sphere may be written as

Eloc = E0 + Ep + Es + Em (1.2.3)

Here E0 is the primary electric field due to the charge on the plates, Ep is the field due to the

polarization charges at the plate-dielectric interface, Es is the field due to the charges induced

at the spherical surface and Em due to all the dipoles of the atoms inside the spherical region.

Now we know that E0 + Ep = E, the macroscopic electric field inside dielectric. Hence,

Eloc = E + Es + Em (1.2.4)

Further, if we are considering crystals of high symmetry (such as cubic crystals) Em = 0.

This is because Em is due to all the dipoles inside the spherical surface, and in such crystals

these are randomly distributed in position.

We may then write

Eloc = E + Es (1.2.5)

It must be remembered that equation, (1.2.5) is not applicable to anisotropic materials, as the

assumption Em = 0 is not rue for them.

To determine the Es we proceed as follows:

Fig.1.2.3 shows an enlarged view of the sphere shown in Fig.1.2.2. The charge element on a

surface element dS of the sphere is equal to the normal component of the polarization times

.. P

P cos 
E



d
r

+

+

+

+

+

+

+

+

+
-

-

-

-

-

-

-

-

-

Fig. 1.2.3 Enlarged view of the sphere.
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the surface element, that is, -P cos dS. According to Coulomb’s law, this charge element

produces a force, given by

dF = q1q2/r
2 =

2

cos

r

dSqP 


acting on a test charge q assumed at the centre of the sphere in this direction of r. Hence, the

field dE, at the centre due to this charge element is

dEs = dF/q =
2

cos

r

dSP 
 (1.2.6)

Now resolving dEs into components parallel and perpendicular to the direction of P, we can

see a perpendicular component will be cancelled due to an equal contribution from another

symmetrically situated surface element. Thus only the component of dEs along the direction

of P will contribute to the integral of equation (1.2.6) over the entire surface. Thus,

Es =  2

2cos

r

dSP 
(1.2.7)

Now the appropriate surface element dS in this case is the ring shown in Fig.1.2.10 so that

dS = 2 r sin r d = 2 r2 sin d, and the limits of integration with respect to  are from 0

to . Thus,

Es = 


0
2

2cos

r

P 
2 r2 sin d,

= 2 P 


0

cos2 sin d,

This integral can be evaluated directly by making the substitution

z = cos and dz = -sin d,

so that

Es = -2 P 
1

1

z2 dz = -2 P

1

1

3

3










 z

=
3

4 P
(1.2.8)

from equation (1.2.23) , we get

Eloc = E +
3

4 P
(1.2.9)
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This equation is called Lorenz relation. This shows that Eloc is indeed different from E, as it is

expected. The former field is larger than latter, so the molecules are more effectively

polarized.

Substituting value of P from (1.1.6) we get

Eloc =
3

2
. (1.2.10 )

This field is referred as Lorentz field.

The assumption Em = 0 is valid for simple cubic lattice. It is also valid for f.c.c. and

b.c.c. lattices and for crystals such as NaCl. It does not hold for all cubic crystals. For

example, in barium titanate, which has cubic symmetry Em does not vanish.

Each type of atom in a given crystal has its own internal field because the

environment of the different atoms is generally different. Thus the internal field at the

location of atoms of type 1, 2, etc. may be written in the form

Eloc1 = E + 1P; Eloc2 = E + 2P, etc (1.2.11)

where the ’s are the internal field constants. Only if Em = 0 do we have  = 4/3.

1.2.3 The Clausius-Mossotti Relation

Now we are in a position to relate the microscopic and macroscopic quantities defined

above. The dipole moment p of a single atom is proportional to the local field, that is,

p =  Eloc

Where  is the electrical polarizability of the atom. If there are different types of atoms, the

polarizabilities are additive and the total polarization of an insulator containing N types is

P =  

N

i 1
nii Eloc = Eloc  

N

i 1
nii

Where ni is the number of i atoms per unit volume having polarizabilities i and acted

on by local field Eloc . Substituting the Lorentz field (1.2.9) then gives

P = (E +
3

4 P
)  

N

i 1
ni i

or, after rearranging terms
















N

i
ii

N

i
ii

n

n

E

P






3

4
1

(1.2.12)

Further, equation (1.1.6) can be rewritten as to give
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



4

1


E

P
(1.2.13)

Thus, combining equations (1.2.13) and (1.2.12) we get





4

1
=















N

i
ii

N

i
ii

n

n






3

4
1

2

1








=

i
i

in 



3

4
(1.2.14)

If all the atoms i are the same, then i
i

in  = n and n =
M

N a
, where  =density, Na is

Avogadro number, and M is molecular weight. So, equation (12.14) can be written in this

case as

2

1








= 



M

N a

3

4

or


M
2

1








=

3

4
Na (1.2.15)

Equation (12.14) or (1.2.15) is called the Clausius-Mossotti equation. It can be used to

determine the polarizabilities of the atoms if the dielectric constant is known. Further, the

dielectric constants of new materials can be predicted from knowledge of the polarizabilities.

This equation thus provides the necessary relation between the microscopic and macroscopic

quantities.

1.2. 4 The static dielectric constant of solids

From the discussions in the preceding sections it is evident that in general the dielectric

polarization P may be considered the sum of three contributions,

P= Pe + Pi + Po (1.2.16)

where the subscripts e, i and o refer, respectively, to electric, ionic and orientation

polarization. This provides a basis for the classification of dielectrics into three classes:

(i) Substances for which Pi = Po = 0 so that P =Pe

(ii) Substances for which Po= 0 and P = Pe + Pi

(iii) Substances for which all three contributions are different from zero.

Although the calculation of internal field is usually complicated by the fact that the

Lorentz expression (1.2.10) does not apply, some remarks may be made about each of these

classes in so far as they apply to solids.



M.Sc Physics Dielectric Properties –Static electric field8

8

(i) Substances for which the static polarization is entirely due to electronic displacements

are necessarily elements, such as diamond. If we assume for the internal field an expression

of the type (1.2.10), one obtains from the relation

Pe = NeEloc = ( –1 )E/4 (1.2.17)

The following expression for the dielectric constant:

 –1 = 4 N e/(1-Ne) (1.2.18)

Where N represents the number of atoms per unit volume. In the particular case for which the

Lorentz expression for the internal field (1.2.18) is valid,  =4/3. The resulting expression

is then usually written in the form of Clausius-Mossotti formula, which may be obtained by

substitution of (1.2.18) into (1.2.13):

( –1)/ ( +2) = (4/3)Ne (1.2.19)

the main experimental test of the correction of either (1.2.17) or (1.2.18) is provided by

measurements of the dielectric constant as function of the number of atoms per unit volume.

It has therefore been applied mainly to gases. For solid elements one would have to vary the

temperature in order to vary N and the possible range of N values is of course very limited.

It may be noted that for this class of substances under consideration, the dielectric

constant is equal to the square of the index of refraction,  =n2. The reason is, that e is

constant even for frequencies in the visible spectrum. This relationship has been confirmed

experimentally for diamond and the dielectric constant of diamond is 5.680.03.

(ii) In general, solids containing more than one type of atom, but no permanent

dipoles, exhibit electronic as well as atomic or ionic polarization. Of particular interest in this

respect are the crystals, such as the alkali halides. Consider, for example, a NaCl crystal in an

external static field E. Apart from the electronic displacements in the ions relative to the

nuclei, the positive ion lattice will tend to move as a whole relative to the negative ion lattice.

Consequently, a considerable contribution to the total polarization may be expected to arise

from the ionic displacements (Pi). That this is indeed the case, becomes apparent from a

comparison of the values of the static dielectric constant defined by

Pe + Pa = ( – 1) E/4 (1.2.20)

and the “high-frequency dielectric constant” 0 defined by

Pe = (0 – 1) E/4 (1.2.21)

(The high-frequency dielectric constant is equal to the square of the index of

refraction for visible light; at such frequencies the ionic displacements cannot follow the field
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variations and consequently 0 =n2 is a measure only of Pe). By way of illustration values for

 and 0 for alkali halides are given in Table 1.2.1.

Table 1.2.1 Static and High – frequency Dielectric constant for some Alkali Halides

Hence Pi is about two or three times Pe in these compounds. In non-ionic compounds, on the

other hand, Pi is usually a relatively small fraction of Pe.

The observed difference between the static and high- frequency dielectric constants is

because of the difficulties involved in calculating quantitatively the internal field.

It may be noted that the force constant and the masses of the positive and negative

ions determine the infrared frequency associated with the lattice vibrations. It is therefore

possible to express the difference (s - 0) in terms of infrared absorption frequency of the

lattice.

(iii) In substances composed of molecules which bear permanent electric dipole

moments, the total polarization is made up of three contributions,

P =Pe + Pi +Po (1.2.22)

Were Po corresponds to the dipolar contribution. There exists no general

quantitative theory for dipolar solids because first of all the same difficulties arises in

evaluating the internal fields as in class (ii), and further more, the dipoles in such solids may

not able to rotate at all or only to some extent. The discussion must therefore be limited to

some qualitative remarks. As an example of a dipolar solid which behaves in a relatively

manner, the dielectric constant measured as function of temperature for

C6H5NO2(nitrobenzene) is shown in Fig. 1.2.11. It is observed that at the melting point there

is large increase in dielectric constant. This is interpreted as an indication that in the solid the

dipoles cannot rotate freely and Po is essentially zero; in the liquid, alignment of the dipoles

in the field direction is possible, so that the increase in  is determined by the now freely

rotating dipoles. The subsequent slow decrease in  is a consequence of the thermal motion

 0 =n2

LiF 9.27 1.92

Nacl 5.62 2.25

LiCl 11.056 2.75
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of particles, as may be understood from equation (1.2.17). In other cases, the behaviour may

be more complicated, as illustrated by Fig. 1.2.12, in which  versus T has been plotted for

H2s. the melting point of H2S is 187.70K. in this case, the dipoles are apparently “frozen in”

at temperature below 103.50K;at this temperature the structure changes in such a manner that

the dipolar groups become mobile; as the temperature is further increased, the dielectric

constant decreases as a result of increased thermal motion. The other changes evidently affect

essentially the density of the material, i.e., N is reduced at these transition points.

1.2.5 Summary of the lesson

The local internal field in a dielectric has been calculated. The Classius-Mosetti relation that

governs the relation between the dielectric constant and various polarizabilities has been

derived.. The description of the static dielectric constant of gasses and solids has also been

presented.

1.2.6 Key -Terminology

Local field, Clausius-Mossotti relation, static dielectric constant of gases and solids.

1.2.7 Self-Assessment Questions

1. Obtain an expression for the local field that is responsible for polarizing atoms or

molecules of a substance.

2. Set-up Clausius-Mossotti relation between polarizability and dielectric constant of a

solid.

3. Discuss the static dielectric constant of gases and solids

1.2.8 Reference Books

1. Solid State Physics- A.J.Dekker (Macmillan India Limited).

2. Elements of Solid state Physics- J.P.Srivastava ( Prentice-Hall of India, New Delhi).



Unit-I

Lesson –3

DIELECTRIC PROPERTIES -ALTERNATING FIELDS

Objective

In this lesson we study the behaviour of dielectrics in alternating electric fields. This study

gives rise to complex dielectric constant and dielectric losses. We also study the frequency

dependency of dielectric constant and measurement of dielectric constant.

Structure of the lesson

1.3.1 Introduction

1.3.2 The complex dielectric constant and Dielectric Losses

1.3.3 Dielectric Losses and Relaxation time

1.3.4 The classical theory of electronic polarization and optical absorption

1.3.5 Measurement of Dielectric constant

1.3.1 Introduction

We now take up the study of the behaviour of dielectrics in alternating electric fields.

Here again we make use of the same basic atomic models used earlier and study the

behaviour of this model in alternating electric field. This study reveals that the dielectric

constant under these conditions is a complex quantity. The imaginary part of this complex

dielectric constant determines the dielectric losses of the material.

In the macroscopic theory of isotropic dielectrics under static fields, the electric flux

density D is proportional to the electric filed intensity E, so the D =  E, where  is a constant

defined as the electric permittivity and is a property of the dielectric.

When a dielectric material is subjected to an alternating field the orientation of the

dipoles, and hence the polarization, will tend to reverse every time the polarity of the field

changes. As long as the frequency remains low (<106 c/s) the polarization follows the

alternations of the field without any significant lag and the permittivity is independent of the

frequency and has the same magnitude as in static field. When the frequency is increased the

dipoles will no longer be able to rotate sufficiently rapidly so that their oscillations will begin

to lag behind those of the field. As the frequency is further raised the permanent dipoles, if
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present in the medium, will be completely unable to follow the field and the contribution to

the static permittivity from this molecular process, the orientation polarization ceases; this

usually occurs in the radio frequency range (106-1011 Hz) of the electromagnetic spectrum.

At still higher frequencies, usually in the infra-red (1011-1014 Hz) the relatively heavy

positive and negative ions cannot follow the field variations so that the contribution to the

permittivity from the atomic or ionic polarization ceases and only the electronic polarization

remains.

The above effects lead to fall in the permittivity of a dielectric material with

increasing frequency, a phenomenon which is usually referred to as anomalous dielectric

dispersion.

Dispersion arising during the transition from full atomic polarization at radio

frequencies to negligible atomic polarization at optical frequency is usually referred to as

resonance absorption.

Dispersion arising during the transition from full orientational polarization at zero or

low frequencies to negligible orientational polarization at high radio frequencies is referred to

as dielectric relaxation.

It should be possible to explain the frequency dependence of the dielectric constant

directly in terms of the electronic structure. It is known that the refractive index varies with

the wavelength of light in the optical region the phenomenon being known as dispersion.

Dispersion can be explained on the basis of classical theory which assumes that atom

contains electrons vibrating at certain natural frequencies characteristic of the atom and that

the application of an alternating field sets such electrons into forced vibration. Since the

molecules in a dielectric are represented as dipoles on bound charges, there must be equal

number of positive charges and negative charges because the dielectric is a neutral medium.

When an electromagnetic wave impinges on this bound charge, it is caused to oscillate and

therefore to radiate. If the frequency of the wave is not equal to the natural frequency of the

bound charge the forced oscillation will have small amplitude and the radiation is very weak.

This corresponds to molecular scattering. If the frequency of the wave is equal to the natural

frequency of the bound charge, there is resonance and a much larger energy form the wave

goes into the charge. In solid, liquid or gas at high pressure there is strong intermolecular

action and friction type forces cause heavy damping with the result that the dipole energy is

quickly dissipated. This corresponds to true absorption. In a gas at low pressure there is no

damping and the dipole radiate strongly. This is resonance radiation. The absorption of an
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electromagnetic wave by a conducting medium is easily explained because the conduction

has a large number of free electrons. When the wave arrives its energy makes the charge

move. The moving charge constitutes current and the usual dissipation of energy by the

current explains the absorption of energy.

At optical frequencies the permittivity is almost entirely due to the electronic

polarization. To determine the dependence of the electronic polarizability on the frequency of

the applied field we shall use the classical model of an electron elastically bound to the atom.

1.3.2 The complex dielectric constant and Dielectric Losses

When a dielectric is kept between a capacitor plates is subjected to an alternating field

the polarization P also varies periodically with time and so does the displacement D. In

general however P and D may lag behind in phase relative to E so that for example if

E = Eo cost (1.3.1)

we have

D = D0 cos(t-) (1.3.2)

= D0 cos  cos t + D0 sin  sin t

= D1 cost + D2 sin t

where  is the phase angle,

D1 = D0 cos  and D2 = D0 sin . (1.3.3)

For most dielectric Do is proportional to Eo but the ratio (Do/Eo) is generally frequency

dependent. To describe this situation one may thus introduce two frequency dependent

dielectric constants,

1 cos1

o

o

o E

D

E

D


11 = sin
0

0

0

2

E

D

E

D
 (1.3.4)

It is frequently convenient to sum these two constants into a single complex dielectric

constant,

* = 1 - i11 (1.3.5)
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Thus D = * E0 eit = * E0 (cos t + i sin t) (1.3.6)

Also we see that

'

''

tan



  (1.3.7)

Because both 1 and 11 are frequency dependent the phase angle  is also frequency

dependent. We shall now show that the energy dissipated in the dielectric in form of heat is

proportional to 11.

The current density in the capacitor is equal to
dt

Dd )(
.

Thus J =
dt

dD

dt

d




4

1
)( 

=  tDtD 



cossin

4
21  (1.3.8)

using equations (1.1.4) and (1.3.2). Where,  is the surface charge density on the capacitor

plates.

The energy dissipated or absorbed per second in the dielectric is given by

















2

0
4

JEdtW (1.3.9)

Substituting for J and E, from (1.3.8) and (1.3.1) one gets

 













  tdtEtDtDW o 



 


coscossin
4

21

2

0














  tdtDEtdttDEW o 








2
2

2

0

1

2

0

0 coscossin
4

The value of integral containing D1 is equal to zero and we are left with

112
02

8
)

8
( 








EEDW o  (1.3.10)

Equation (1.3.10) tells that the amount of energy absorbed is proportional to sin since 11 =

(D0/E0) sin . The energy so dissipated in the dielectric medium is referred to as the dielectric
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loss. For this reason sin is called the loss factor and  is the loss angle (but it is customary)

to call tan as the loss factor; this is correct only for small values of  because tan  sin 

. The dielectric loss at low frequencies is mainly due to d.c. resistivity. But at high

frequencies the dielectric loss is mostly due to dipole rotations or to ionic transitions from the

lower energy states to higher energy states. Because of the upward transition the energy is

absorbed from the applied field. The losses associated with ions, the frequency of which fall

in the infrared region, are usually referred to as optical infrared absorption. Similarly, the

losses in the optical region, associated with the electrons, are referred to as optical

absorption.

1.3.3 Dielectric Losses and Relaxation time

Let us consider a dielectric, for which the total polarization Ps in a static field is

determined by three contributions,

Ps =Pe + Pi + Po (1.3.11)

In general, when such a substance is suddenly exposed to an external static field, a certain

length of time is required for P to be built up to its final value. In the present section it will be

assumed that the values of Pe and Pi are attained instantaneously, i.e., we shall be concerned

with frequencies appreciably smaller than infrared frequencies. The time required for

orientational polarization, Po to reach its static value may vary between days and 10-12

second, depending on temperature, chemical constitution of the material, and its physical

state is called relaxation time.

To begin with we shall give a phenomenological description of the transient effects

based on the assumption that a relaxation time can be defined; we can then proceed to

consider the case of an alternating field. Let Pos denote the saturation value of Po as function

of the time after the field has been switched on is given by

Po(t) = Pos(1- e-t/) (1.3.12)

where  is the relaxation time.

dPo/dt = (1/) [ Pos – Po (t)] (1.3.13)

For the decay occurring after the field has been switched off, this leads to a well–known

proportionality with e-t/. In the case of an alternating field E = E0 eit, equation may

employed if we make the following change: Pos must be replaced by a function of time Pos(t)
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representing the saturation value which would be obtained in static field equal to the

instantaneous value E(t). Hence for alternating fields we shall employ the differential

equation

dPo/dt =(1/) [[ Pos(t) – Po (t)] (1.3.14)

Now, our final goal is to express the real and imaginary parts of the dielectric constant in

terms of the frequency  and the relaxation time . For this purpose we shall define the

“instantaneous” dielectric constant ei by

Pe + Pi = (ei – 1)/4 E (1.3.15)

We may then write

Pos = Ps – (Pe + Pi ) = (s - ei )/4 E (1.3.16)

Where s is the static dielectric constant and ei is the dielectric constant arising due to

electronic and ionic polarization. Substitution of Pos into (1.3.14) yields

dPo/dt = (1/)[ (s - ei )/4 E0 eit- Po ] (1.3.17)

Solving this equation, we obtain

Po(t) = Ce-t/ + 1/4 (s - ei)/(1+i) E0 eit (1.3.18)

The first term represents a transient. The total polarization is now also a function of time and

is given by P(t) = Pe + Pi + Po(t). Hence, for the displacement one obtains

D(t)= *E(t) = E(t) + 4 P(t) (1.3.19)

where * is the complex dielectric constant. From the last two equations and from the

definition * = 1 – i 11 the following expressions result:

1() = ei + (s - ei)/(1+i22) (1.3.20)

11 () = (s - ei) /(1+i22) (1.3.21)

These equations are frequently referred to as the Debye’s equations. In Fig. 1.3.1 the

quantities 1 and 11 are represented as functions of . It is observed that the dielectric
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loss, which is proportional to 11 according to (1.3.10), exhibits a maximum for  = 1, i.e.,

for an angular frequency equal to 1/. Also, for frequencies appreciably less than 1/, the real

part of the dielectric constant 1 become equal to the static dielectric constant. In this

frequency range, therefore, the losses vanish and the dipoles contribute their full share to the

polarization. On the other hand, for frequencies larger than 1/, the dipoles are no longer able

to follow the field variations and the dielectric constant 1 approaches ei.

Note that for this type of mechanism the relaxation time decreases with increasing

temperature as so does the saturation polarization. It is of interest to observe that if the

quantities 1 and 11 are measured at a constant frequency but at different temperatures, the

curves as indicated in Fig. 1.3.2 may be expected to result.






'



''
 ea

s



Fig. 1.3.1 Debye curves for ’ and ’’ as
function of frequency for a dielectric with
a single relaxation time

T


'



''




Fig. 1.3.2 The dielectric constant as a
function of temperature at a given
frequency, as predicted from the model
discussed in the text
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1.3.4 The classical theory of electronic polarization and optical absorption

In Lesson 1.1 the concept of the static polarizability due to elastic displacements of

electrons and ions was introduced. In the present section the classical theory of this

phenomenon in alternating fields will be discussed. We have seen that restoring force

determining the displacement is in first approximation proportional to the displacement itself.

The discussion is therefore based on the model of a displacement itself. The discussions is

therefore based on the model of an elastically bound particle of charge e and mass m in an

alternating field E0 eit may be written

xm
xt

dx
m

dt

xd
m 2

02

2

  = e E0e
it (1.3.22)

where 0 is the natural angular frequency of the particle; 0= (f/m)1/2 where f is the restoring

force constant ; the second term on the left – hand side is a damping term, which results from

the fact that the particle emits radiation as a consequence of its acceleration and  is the

damping factor. The solution for this forced damped vibration is

x(t) =
m

e
.





i

eE ti

 22
0

0 (1.3.23)

We first of all note that in a static field, for =0, this reduces simply to

x = eE0/m0
2 or s = ex/E0 = e2/m0

2 for  = 0 (1.3.24)

Where s is static polarizability associated with the elastically bound particle. If we take for e

and m the electronic charge and mass, this expression would correspond to the contribution

of a particular electron to the electron polarizability. Now we have seen in Sec. 1.1.2 that the

electronic polarizabilities are of the order of 10-24 cm3; this gives a natural frequency 0 =

0/2 1015 per second. Thus, even for frequencies corresponding to the visible spectrum,

the electronic polarizability may be considered constant. If e and m refer to an ion, the

natural frequencies are of the order of 1013 per second, corresponding to the infrared part of

the spectrum.

The electronic polarizability is therefore

 αe =
E

ex
=

 im

e

 22
0

2 1
(1.3.25)

The complex dielectric constant is then gieven by
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() = 1+
m

Ne24
.

 i 22
0

1
(1.3.26)

where N is the number of electrons per unit volume. This follows by using P = Nex and  =

1+4P/E.

Now, from the definition of the complex dielectric constant () = 1() – i11()

One finds

1() = 1+
m

Ne24
22222

0

22
0

)( 





 (1.3.27)

11 () =
m

Ne24
22222

0 )( 




(1.3.28)

It may be noted that 1() gives us the value of the dielectric constant and from 11() we get

the power dissipated and hence the damping loss. The variation of (1 – 1) and 11 these

with frequency is shown in Fig. 1.3.3. Note that 11 has a















maximum at = 0. The meaning of this maximum is that the material absorbs energy at the

natural frequency; this type of absorption is called resonance absorption. In the absorption

region, the dielectric constant 1 depends on frequency and one speaks in this connection of

dispersion. The region for which 1 decreasing with frequency is referred to as the region of

anomalous dispersion.





''


Fig. 1.3.3 Behaviour of o
’ and o

’’ as
function of frequency in the vicinity of
the resonance frequency o


'

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Total Polarizability

Let us now discuss the total polarizability α = αo +αi +αe. It has been found that the total

polarizability of a dielectric substance shows marked difference in behavior when studied as

a function of frequency. To summarize the frequency-dependence of the polarizability we

have represented, in Fig.1.3.4, α() for a dipolar substance. It is clear that as we go from the

static to the optical region, the polarizability α decreases by a substantial amount.  Speaking 

in terms of dielectric constant, the dielectric constant of water, for example is 81 at zero

frequency while it is only 1.8 at optical frequencies. Moreover, the decrease in polarizability

α is not uniform –remarkable decrease occurs only in the microwave, infrared and ultra-

violet regions.















The behaviour of polarizability can be understood from the various possesses and

from the concept of the relaxation time for each process. When the frequency of the applied

field is much greater than the inverse of the relaxation time for a particular polarization

process, that particular polarization process fails and so it does not contribute to

polarizability. Thus, the decrease of total polarizability with increase in frequency is due to

the disappearance of αo, αi and αe successively.





α (real part) 



αe + αi + αo

αe + αi

αe

Micro
waves

Infrared Ultra
violet

Fig. 1.3.4 Variation of total polarizability as a function of
frequency.
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1.3.5 Measurement of Dielectric constant

Dielectric constant of a given substance is usually measured by comparing the

capacity Cd of a condenser filled with the substance and the capacity C0 of a the empty

condenser . The ratio
0C

Cd = , is the dielectric constant. The capacities Cd and C0 may be

measured by resonance method as shown in the Fig 1.3.4.

Fig. 1.3.5 Principle of the resonance method for measuring Co and Cd.

In the figure, Cs is a calibrated variable condenser and C is the condenser in which the given

substance which is taken in the form of a thin disc may be placed. By varying Cs so a sto

keep the resonance frequency

o =
)]([

1

CCL s 
(1.3.29)

constant when C is empdty and then filled, we may determine C0 and Cd, and hence . The

voltmeter V measures the response of the resonant circuit.

This method is generally used to measure the dielectric constant up to frequencies

100 Mhz. At the microwave region ( 103 to 105 Mhz) the frequencies are so high that the

Cs C
L

V

Oscillator

Specimen
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dimensions of the apparatus are comparable with or greater than the wavelength, and the

specimen hen can no longer be treated as if it were in quasi-static fields. Rather, it has to be

treated as a medium for the propagation of electromagnetic waves. Here we may measure the

dielectric constant of the specimen by measusring the wavelength of the microwave radiation

in the specimen and using the relation

specimen

vvacuum




= (µ)1/2 (1.3.30)

where µ is the permeability; for non-magnetic materials, µ  1. For optical and infrared

frequencies,  can be measured by measuring the refractive index, n as

n2 =  µ  

1.3.6 Summary of the lesson

When a dielectric material is subjected to an alternating field the orientation of the

dipoles alter in accordance with the field changes. At higher frequencies dipoles will no

longer be able to rotate sufficiently rapidly and unable to follow the field and the permittivity

of the material decreases. The average time taken by the dipoles to orient in the field

direction is known as relaxation time.

When a dielectric is subjected to an alternating field, the polarization and

displacement vector also vary periodically with time and this gives rise to complex dielectric

constant. Dielectric constant depends on the frequency of the applied electric field. When a

dielectric is subjected to alternating field, the electrical energy is absorbed by the material

and dissipated in the form of heat. This dissipation of energy is called dielectric loss.

Debye’s equations relating dielectric loss and relaxation time are

1() = ei + (s - ei)/(1+i22)

11 () = (s - ei) /(1+i22)

The losses associated with ions, the frequency of which fall in the infrared region, are called

as optical infrared absorption and the losses in the optical region, associated with the

electrons, are referred to as optical absorption.
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1.3.7 Key- Terminology

Complex dielectric constant-dielectric losses-optical infrared absorption- optical absorption-

resonance absorption-relaxation time Debye’s equations-measurement of dielectric constant

1.3.8 Self-Assessment Questions

1. Explain the behaviour of dielectrics in an alternating electric field.

2. Obtain the expression for the energy absorbed per second in dielectric material when

an alternating electric field is applied.

3. Deduce Debye’s equations relating dielectric loss and relaxation time.

4. Explain the phenomenon of optical absorption on the basis of classical theory.

5. Discuss the variation of total polarizability as a function of frequency.

6. Explain the method to determine dielectric constant of a substance.

1.3.9 Reference Books

1. Solid State Physics- A.J.Dekker (Macmillan India Limited).

2. Elements of Solid state Physics- J.P.Srivastava ( Prentice-Hall of India, New Delhi).



Unit-I

Lesson-4

FERROELECTRIC CRYSTALS

Objectives

 To present in detail the properties of ferroelectric crystals and their classification.

 To discussion on the ferroelectric transitions of BaTiO3 based on thermodynamic

theory

Structure of the lesson

1.4.1. Introduction

1.4.2. Representative crystal types of ferroelectrics

1.4.3. Theory of the ferroelectric displacive transitions

1.4.4. Thermodynamic theory of the ferroelectric transition

1.4.5 Ferroelectric Domains

1.4.6 Antiferroelectricity

1.4.1 Introduction

When the centre of a positive charge does not coincide with the centre of negative

charge in a primitive cell, the primitive cell possesses an electric dipole moment even in the

absence of applied electric field. Thus the crystal as a whole has a polarization implying that

it is spontaneously polarized The shifting of positive charge from the centre of negative

charge is exhibited in the lack of centre of symmetry in the crystal. Out of 32 crystal point

groups, 21 point groups do not have a centre of symmetry. Except one point group, which is

highly symmetric, the rest 20 point groups represent an extremely useful class of materials,

known as piezoelectrics.

Piezoelectrics: Piezoelectric crystals show electric polarization on being externally strained

and conversely, show deformation when placed under the influence of an applied electric

field. This was discovered by French physicists Pierre curie and Paul-Jean Curie in the year

1980. If the crystal belongs to any one of the above 20 point groups, it can be predicted that

the crystal would be piezoelectric. Ammonium phosphate, quartz, PZT (Lead Zirconate

Titanate) are some examples of piezoelectric crystals.

Pyroelectrics: Among the class of 20 crystal point groups which lack centre of symmetry,

10 crystal point groups are spontaneously polarized. These spontaneously polarized

dielectric crystals are called pyroelectric crystals. The polarization in pyroelectric crystals is
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usually masked by surface charges that accumulate on the surface from the atmosphere and

subsequently neutralize the layers of ions. But, when the temperature of the crystal is altered,

the masking is no longer complete as the polarization changes because of thermal expansion

or contraction of the crystal. Owing to the thermal effect on polarization, these crystals are

named pyroelectric (pyro means fire). The thermal effect accompanying deformation thus

supports the piezoelectric property of the crystals. This only confirms that all pyroelectric

crystals are piezoelectric, though converse is not true.

While maintaining the crystalline properties, the symmetry operations of a

pyroelectric crystal must preserve the direction of polarization P. This imposes severe

restrictions on the point group symmetries as a result of which only 10 point groups are

found to meet the conditions of pyroelectric crystals. The rotation is allowed about only one

axis that is parallel to P and there cannot exist mirror planes perpendicular to this axis. The

structural scrutiny of crystal groups reveals that only the following point groups meet the

restrictions of pyroelectric crystals:

Cn, Cnv (n =2,3,4,6), C1 and C1h

Thus the pyroelectric property too, like piezoelectricity, is solely determined by the

symmetry properties of crystals.

Ferroelectrics: Ferroelectric crystals have additional property that the polarization in them

can be changed and even reversed by an external electric field. On the other hand, this is not

possible in pyroelectrics even with the maximum electric field that may be applied without

causing electrical breakdown. The additional feature of ferroelectrics that distinguishes them

as a special class of pyroelectrics does not follow from the characteristics of crystal structure.

It is established only on the basis of dielectric measurement.

Furthermore, the additional feature of ferroelectrics mentioned above converts the

usual linear relationship between polarization and applied electric field into a hysteresis loop.

Since the dielectric behaviour of these materials is in many respects analogous to the

magnetic behaviour of ferromagnetic materials, they are called ferroelectric solids, or

ferroelectrics. The ferroelectric behaviour is observed only below a certain temperature,

called the Curie point, Tc. A ferroelectric is spontaneously polarized, i.e., it is polarized in

the absence of external field; the direction of the spontaneous polarization may be altered

under influence of an applied electric field. In general, the direction of spontaneous

polarization is not the same throughout a macroscopic crystal. Rather, the crystal consists of

a number of domains; within each domain the polarization has a specific direction, but this

direction varies from one domain to another.
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1.4.2. Representative crystal types of ferroelectrics

In general the ferroelectric crystals may be broadly classified into four representative groups
such as i) Ilmenites and Perovskites, ii) KDP type iii) TGS type and iv) Rochelle salt type as
given in Table 1.4.1. The table gives the Curie point Tc and the spontaneous polarization Ps

for a number of common ferroelectric crystals. The electric susceptibility  in the paraelectric

phase is related to temperature by the Curie- Weiss law:  =

cTT

C


………. (1.4.1)

where C is the Curie constant.

The ferroelectric crystals are also distinguished on the basis of oscillatory nature of

the atomic displacements that destroy the ferroelectric dipole order above the Curie

temperature. In the ferroelectric phase of some crystals, the atomic displacements can be

viewed as oscillations about a polar site. In the paraelectric phase these oscillations take

place about a non-polar site. The phase transition that brings about this transformation in the

nature of oscillations is called a Displacive phase transition. These crystals are accordingly

identified as Displacive type. The well-known examples of this class are ionic crystals with

ilmenite and perovskite structures. The GeTe is the simplest ferroelectric crystal having the

ilmenite structure (i.e., NaCl structure) and BaTiO3 is the representative crystal of

perovskites.

Table 1.4.1 Data on some representative ferroelectric crystals

____________________________________________________________________
Group Crystal Tc(K) Ps At T (K)

C/m-2x10-2

___________________________________________________________________
Ilmenites and GeTe 670 ------ ------

Perovskites LiNbO3 1480 71 296

KNbO3 710 30 600

BaTiO3 393 26 300

SrTiO3 32 3 4.2

KDP type KH2PO4 123 4.7 100

KD2PO4 213 5.5 100

RbH2PO4 147 5.6 90

KH2AsO4 97 5.0 78

TGS type (Nh2CH2COOH)3.H2SO4 322 2.8 275

(Triglycine sulphate)

Rochelle NaKC4H4O6.4H2O 296(upper) 0.25 275

Salt type (Rochelle salt) 255(lower)
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There is another very interesting class of crystals in whose non-ferroelectric state the

potential energy function around certain atomic sites is double-well or multiple-well shaped.

On the transition to the ferroelectric state the atomic displacements about those sites are

executed as oscillations in an ordered subset of the referred potential wells. It involves an

order-disorder type of phase transition. Common examples of these crystals, classified as

order-disorder type, are some

hydrogen bonded solids, namely KDP type crystals. The replacement of hydrogen by

deuterium in KDP type crystals raises the Curie point in an amazing proportion. Though the

increase in the molecular weight is less than 2 percent, the Tc rises from 123K to 213K in the

deuterated KDP and from 96K to 162K in KD2AsO4.

For specific description, Rochelle salt and BaTiO3 are chosen as the two

representative compounds of ferroelectrics whose properties are uniquely different.

a. Rochelle Salt

The first solid which was recognized to exhibit ferroelectric properties is Rochelle salt, the

sodium-potassium salt of tartaric acid; it has the chemical formula NaKC4H4O6.4H2O. It was

first prepared in 1672 by a pharmacist Seignette who lived in Rochelle. It represents the

tartaric group of salts whose other well known member are lithium ammonium tartrate and

lithium tantalum tartrate. The most noteworthy characteristic of Rochelle salt is that it is

ferroelectric between two temperatures (255K and 296K). On account of its two transition

temperatures, Rochelle salt becomes a special and peculiar example of ferroelectrics.

The crystal structure of Rochelle salt is somewhat complex. Above 296K and bellow

255K the structure is orthorhombic (three mutually perpendicular axes a,b,c). It has a

monoclinic symmetry in the ferroelectric phase such that the angle (between the c- and a-

axes) differs from 900 and the spontaneous polarization is along the original orthorhombic a-

axis. Thus Rochelle salt has only one polar axis and two possible polarization directions (+

and – along the a- axis).

Halblutzel has measured the dielectric constant of Rochelle salt along the three crystal

axes over the whole useful range of temperatures. Figure 1.4.1 gives a logarithmic plot of

these values. The Curie-Weiss law applies above 296 K and below

255 K. With the help of the experimental data it is easy to confirm that the two regions have

different values of Curie constants. The dielectric constant measured along the polar axis a
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peaks at both transition temperatures, assuming a value as high as 4000. The behaviour of

spontaneous polarization as a function of temperature is shown in fig 1.4.2. The lower curve

represents Rochelle salt and the upper curve belongs to the deuterated salt.

Fig. 1.4.1. Variation of dielectric constant of Rochelle salt with temperature.

Fig. 1.4.2. Variation of the spontaneous polarization with change in temperature. The lower

curve represents original Rochelle salt and the upper curve represents the deuterated salt.

b. BaTiO3

The BaTiO3 is the most important and most completely investigated representative of

the perovskites type ferroelectrics. In the non-ferroelectric state (i.e. above 393 K) it has

cubic symmetry as shown in Fig.1.4.3 (a). The Ba2+ ions are positioned at the corners, O2-

ions at the centre of the faces and the Ti4+ ion is located at the centre of the cube. It has an
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arrangement of highly polarizable oxygen ions in the form of an octahedron with a small

titanium ion at the centre [Fig 1.4.3(b)].

Fig. 1.4.3. a) Unit cell of BaTiO3 (perovskite structure) b) Main distortion in BaTiO3 Unit

cell that gives rise to ferroelectricity.

The dielectric and spontaneous polarization over a range of temperatures are shown in

figs. 1.4.4 and 1.4.5, respectively.

Fig.1.4.4. Variation of the dielectric constant BaTiO3 with change in temperature.

Fig. 1.4.5. Behaviour of the spontaneous polarisation of BaTiO3 with variation in

temperature.
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The curves clearly indicate that there are three ferroelectric phases of crystal whose brief

details may be put as:

_____________________________________________________________

Temperature Direction of Ps Crystalline symmetry

_range_______________________________________________________

278-393 K [001] Tetragonal

193-278 K [011] Orthorhombic

< 193 K [111] Rhombohedral

_____________________________________________________________

When the dipole order sets in at 393 K, there is an expansion of the crystal along one pseudo-

cubic axis(c-axis) accompanied by a contraction along each of the axes perpendicular to this

direction. The distortions produced in the crystal below the Curie point are explained in fig.

1.4.3(b). The sub-lattice of all the Ba2+ and Ti4+ ions is shifted with respect to the sub-lattice

of the O2- ions, the displacement d being barely ~0.1 A0at room temperature. This leads to

the dipole moment per unit cell p, given by

p = 6e . d = 0.96 x 10-29 C m

The dipole moment p can alternatively be estimated by multiplying Ps (as obtained

from Fig.1.4.5 at room temperature) by the unit cell volume. Treating the unit cell as a simple

cube of edge 4 A0 even in the ferroelectric state, we get p = 0.3(4 x 10-10)3 = 1.92 x 10-29 C

m. Thus we find this value agrees very well with that obtained on the basis of the observed

deformation of the unit cell. The order of magnitude gives a measure of the ferroelectric

effect in BaTiO3.The effect, however, is fairly large in some other perovskites (e.g. LiNbO3).

The fact that Fig.1.4.5 shows Ps along the [001] direction, warrants our further

attention. This implies that we must multiply the values shown in the figure by 2 and 3 to

obtain the actual values in the regions 193 K < T < 278 K and T<193K, respectively, because

the direction of Ps in these regions is along the [011] and [111] directions, respectively. It is

then quite interesting to note that spontaneous polarization (same as the saturation

polarization) remains almost constant below 300K.
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1.4.3. Theory of the ferroelectric displacive transitions

The theory that gives a good account of transitions in perovskites type crystals merits a

separate treatment on account of having stood the test of vast experimental data. These

crystals generally undergo a displacive transition at the Curie point. We can follow two

approaches for finding interpretation to a displacive transition. One approach is the

polarization catastrophe and the other one is the soft mode approach.

The polarization catastrophe refers to an unusual situation in which the polarization

becomes infinitely large. In this condition the force exerted by the local electric field is

greater than the elastic restoring force. This produces an asymmetric shift in the positions of

positive and negative ions. The shift is, however, limited to a finite displacement by the

anharmonic restoring forces.

In the soft mode approach a transverse optical (TO) mode is frozen, i.e. its frequency

vanishes at some point in the Brillouin zone below the Curie temperature. This TO mode is

known as a soft mode. When T = 0, the crystal becomes unstable because of the absence of

an effective restoring force.

Polarization Catastrophe

The Clausius-Mossotti relation (1.2.14) can be rearranged in the form

)(3

)(3
1

0 eeii

eeii

NN

NN









 (1.4.2)

where

Ni and Ne are the density of polarizable ion pairs and electrons, respectively and

 αi and αe are the ionic and electronic polarizabilities, respectively.

When

03)(   eeii NN (1.4.3)

the dielectric constant becomes infinite [from 1.4.2], giving the state of polarization

catastrophe.

Further,

P = (Niαi + Neαe) Eloc

= (Niαi + Neαe) 









03

P
E (1.4.4)
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for a cubic crystal ( using Lorentz expression for Eloc).

If E = 0, then from (1.4.4) we have












1

3 0

 eeii NN
P = 0 (1.4.5)

But, when the polarization catastrophe occurs, the quantity within the brackets equals zero

[from (1.4.3)].

This requires that

P  0 (1.4.6)

for (1.4.5) to be true.

This result (1.4.6) is true only when applied field is zero.

In order to understand the above situation, let us consider a highly polarizable ionic crystal of

cubic symmetry.  Let α be the total polarizability and p the dipole moment of an ion pair.  Let 

us assume that some transient stray field starts polarizing the ion pairs. The ion pairs will

keep on polarizing until some resistance develops to stop the process. The resistance that

finally stops the process of polarization exists in the form of anharmonic restoring forces.

The dipole moment of a single ion pair with ion separation x is

   P = q.x = α Eloc = 








q

F
(1.4.7)

where F is the restoring force that tends to bring the positive and negative ions together and q

is the charge on each ion.

The work required to create N such dipoles in the unit volume of the crystal is

E1 = N  dxF. =  dxx
Nq

.
2


=

2

2Np
(using 1.4.7) (1.4.8)

=
2

2

N

P

On the other hand, the energy density associated with the electrical displacement due to Eloc

is

E2 =  Eloc. dP

=  









03

P
E . dP



M.Sc. Physics 10 Ferroelectric Crystals .

=  dPE
P

.
6 0

2


(1.4.9)

since E1 is set against E2, the net energy density of a polarized dielectric is

E2 – E1 = 







 dPE

N

N

P
.1

32 0

2






(1.4.10)

This shows that even when E = 0, E2>E1, provided that

  Nα 30 (1.4.11)

The above condition in a general case is written in the form


j

jjN  30 (1.4.12)

where Nj stands for the density of the j th type of particles (ions/electrons) in the crystal and

αj denotes the polarizability of a single particle of this type.

The sign of equality in (1.4.12) describes the condition of polarization catastrophe

(1.4.3) with


j

jjN   ≡  Ni Ai + Ne αe (1.4.14)

From relation (1.4.10) it follows that the energy of the crystal becomes smaller in the

presence of induced dipoles. The minimum value of 
j

jjN  for which the ferroelectricity

would occur is 30. In any real ferroelectric crystal the situation that exactly corresponds to

the polarization catastrophe is not found. However, a small deviation in the value of


j

jjN  from 30 changes the value of  (1.4.2) by a large amount.

If we express 
j

jjN  = 30-3β 

with β<<1 and using (1.4.2), we get 

 


1
(1.4.15)

If we assume that β is a linear function of temperature near the Curie point and given by 

   β = 


cTT 
(1.4.16)

 being a constant, then
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 
cTT 

1
(1.4.17)

The temperature dependence of  as a given by this relation is in excellent agreement with

the observed behaviour in several perovskite crystals.

Ferroelectricity in perovskite crystal is understood in view of the following remarks made in

respect of barium titanate:

1. The titanium ion motion. The barium ions situated at the cube corners leave a

big void at the centre position. Since titanium ion is smaller than barium ion, it is

unable to fill the void and is free to rattle around in the void. Because the ionic

polarizability is a measure of the ease of displacement, its value increased.

2. The non-cubic symmetry around oxygen ions. Unlike the barium and titanium

ions, the oxygen ions are in the non-cubic environment. An oxygen ion has only

two nearest neighbours in the form of titanium ions. Because of this reason, Eloc

is greater than the value given by Lorentz expression.

A larger value of α predicted under point 1 leads to a smaller value of deformation energy E1

or the work required to create induced dipoles. Similarly, a large value of Eloc as expected

under point 2 implies that the dipolar attraction will be larger.  Thus, larger values of both α 

and Eloc are favourable to the onset of ferroelectricity.

Soft mode approach

As mentioned earlier, a ferroelectric state can be regarded as a frozen in TO phonon.

According to Lyddane-Sachs-Teller relation (popularly known as LST relation)

sLO

TO







 
2

2

where s is the static dielectric constant ,  is the dielectric constant at optical frequencies,

TO and LO are the transverse and longitudinal optical mode frequencies.

Above expression shows that as s increases, TO decreases; thus, in the case of an infinitely

large s, which happens at the Curie point (Tc), TO may even be zero. In practice , s remains

finite on approaching Tc. The TO modes in question are called soft modes. Such TO modes

have surprisingly low frequencies. For example, BaTiO3 has a soft mode of frequency 12

cm-1 at 297 K which is low for a TO mode.

We are not concerned here with LO phonons whose frequency is higher for the same value of

the wave vector. At the transition point Tc when TO approaches the zero value, the crystal
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becomes unstable and anharmonic elastic forces come into play. In the presence of

anharmonic forces, TO may show a temperature dependence of the form

2
TO  (T – Tc) (1.4.18)

On assuming that TO are temperature dependent, the LST relation in view of (1.4.18) gives

s

1
 (T – Tc) (1.4.19)

Experimental results on several perovskite ferroelectrics strongly support that a large static

dielectric constant (s) is associated with a low TO phonon (the soft mode). In view of

(1.4.18) and (1.4.19) the temperature dependence of the energy of a low frequency TO

phonon can be directly compared with that of the inverse dielectric constant, as shown in

Fig. 1.4.6 for a KTaO3 crystal. To have a clear idea, a schematic representation of the

temperature dependence of s
-1, 2

TO and the saturation polarization Ps is shown in Fig. 1.4.7
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Fig. 1.4.6 Temperature dependence of TO mode at K = 0 in KTaO3. The
square of the phonon energy (points) is compared with the reciprocal of the
dielectric constant (dashed line)
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Fig. 1.4.7.

1.4.4. Thermodynamic theory of the ferroelectric transition

It is of interest to investigate the behaviour of a ferroelectric in the vicinity of its transition

temperature Tc on the basis of thermodynamic arguments. A thermodynamic theory has the

advantage of being independents of any particular atomic model and thus leads to quite

general conclusions. Although such a theory does not provide the physical mechanism

responsible for the ferroelectric properties of a given material, it does point to certain features

one should look for in atomic models.

Consider a crystal which is ferroelectric for temperature T < Tc. Let x denote the

relative displacement of the centres of the positive and negative ions in the crystal during a

particular mode of vibration. If F0 be the free energy of the unpolarized crystal, the free

energy of the polarized crystal F is a function of the even powers of x. That is,

F-Fo = 2 x2 + 4 x4 + 6 x6 + . . . . (1.4.20)

The constants  are functions of all other displacements and given by their thermal average

values. They are thus functions of temperature. Since the electric polarization P is

proportional to the displacement x, we have

F – Fo =
2

1
2P

2 +
4

1
4P

4 +
6

1
6P

6+ . . . . (1.4.21)

The constants  are the functions of temperature. The numerical factors are introduced to

facilitate calculations.

Consider first the paraelectric phase of the crystal, i.e., for T>Tc. If a small electric

field E is applied in the absence of any external pressure, the following thermodynamic

relation holds good :

dF = - SdT + E dP (1.4.22)

where S represents the entropy of the crystal.
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For smaller E, P will also be smaller, and hence we retain only the first term in

(1.4.21) neglecting all; and hence other terms in the first approximation. Then, using (1.4.22)

we have

E =
TP

F












= 2P (1.4.23)

The electric susceptibility P in the paraelectric phase is given by

P
1 = 









dP

dE

P
0 = 02 [from (1.4.23)] (1.4.24)

using the Curie-Weiss law (1.4.1), we have

02 =
C

TcT 

or 2 = C1(T-Tc) (1.4.25)

where C1 is another constant.

Relation (1.4.25) shows that 2 increases linearly with increase in temperature. As a result of

this temperature dependence, 2 varies from positive values to negative values as the

temperature is lowered from above Tc to below Tc.

In the state of thermal equilibrium, the free energy is minimum which requires that

TP

F












= 0

Applying this condition to (1.4.21) in the absence of the applied electric fields, we have

2P + 4P
3 + 6P

5 + . . . . . .= 0 (1.4.26)

The spontaneous polarization is bound to satisfy (1.4.26) and

Ps(2 + 4Ps2 + 6Ps4 + . . . .) = 0 (1.4.27)

We find that Ps = 0 is always a root of (1.4.27). For this solution the free energy has a

minimum provided 2 is positive 












22

2


P

F
. However, if 2, 4 and 6 are all positive and

higher order terms are neglected, the condition (1.4.27) is satisfied only for Ps = 0. Thus, Ps

=0 corresponds to the only minimum of the free energy and the paraelectric phase exists for

the positive sign of 2, 4 and 6.
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When the temperature is lowered through the transition point, 2 goes from positive

do negative values while passing through 2 = 0 at the transition point. There are two

interesting situations that are identified in terms of the signs of 2, 4 and 6. These

characterize two cases of particular interest namely second-order and first-order

transitions.

Second-order Transitions: If the coefficients 4, 6, . . . . are all positive and the value of 2

varies from positive to negative as the temperature is lowered, the free energy changes as

shown in Fig. 1.4.8 (a). Neglecting the terms beyond the second term in (1.4.27) are

negligible, we get

4

22




sP =

4

1 )(



TTC c 
(1.4.28)

Hence Ps is a continuous function of temperature and falls continuously to zero at T = Tc as

shown in Fig. 1.4. 8 (b).

(a) (b)

Fig. 1.4.8 Second order transition (a) Free energy as a function of polarization as the

temperature is varied. (b) Temperature dependence of the spontaneous polarization below

the transition temperature Tc.

It is useful to examine the spontaneously polarized state in terms of the frequency of

normal modes. From the forms of the free energy (1.4.20) and (1.4.21), it follows that

2 or 2 = i
2(k)

and hence in view of (1.4.25),

i
2(k)  (T – Tc) (1.4.29)
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Cv

T Tc

Fig. 1.4.9 Temperature dependence of specific heat showing
anomaly at a second-order phase transition

where i(k) is the frequency of the normal mode i (a TO mode). The transition takes place

when i(k)  0. This decrease in the mode frequency is called softening. This indicates

that the harmonic restoring forces are becoming very weak, permitting a large displacement

which is limited solely by anharmonic forces. When i2(k) or 2 is small and positive then

the crystal lattice becomes soft and close to instability. Below Tc, 2 is negative and hence

also i
2(k); which implies that the unpolarized lattice is unstable and the crystal is in the

spontaneously polarized ferroelectric state.

The heat capacity is given by

Cv = C1
2T/4 (1.4.30)

The heat capacity falls discontinuously to zero at T =Tc (see Fig. 1.4. 9). But there is no

latent heat at the transition. Such a transition is called a second-order transition.

The transitions in Rochelle salt, KH3PO4 and LiTaO3 are some examples of the

second-order transition. The transition to the superconducting state is the most popular

example of this type of transition.

First-order Transitions

We have seen that when 2 is negative and 4 is positive, the transition is of the second-order

type. We now consider a situation where 4 is negative and 6 is positive. Positive values of

6 are considered to restrain the free energy from going to minus infinity. As per expression

(1.4.25), 2 varies from positive to negative as the crystal is cooled through the Curie point.

The corresponding free energy curves are shown in Fig. 1.4.10.
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The thermal equilibrium condition,
P

F




= 0, in the absence of the applied electric

field gives

2Ps + 4Ps
3 + 6Ps

5 = 0 (1.4.31)

which implies that either Ps = 0, or

2 + 4Ps
2 + 6Ps

4 = 0 (1.4.32)

At T = Tc, the free energy in the paraelectric state is equal to that in the ferroelectric state,

i.e.,

F0(Tc) = F(Tc) (1.4.33)

Using (1.4.34) in (1.4.21), we have

0 =
2

1
2Ps

2 (Tc) +
4

1
4Ps4 (Tc) +

6

1
6Ps6(Tc) + (1.4.34) . .

Then using (1.4.32), we get

2 + 4Ps
2 (Tc) + 6Ps

4 (Tc) = 0 (1.4.35)

Substituting the value of 2 from (1.4.35) in (1.4.34) and solving for Ps
2(Tc). We get

Ps
2(Tc) = -

6

44

4

3

64

3
















(1.4.36)

And with

2 = 








6

2
4

16

3




(1.4.37)

Ps
4(Tc) =

6

23




(1.4.38)

At the transition point there are two minima of free energy with equal value; one at Ps(Tc) = 0

in the paraelectric phase and the other for the value of Ps(Tc) given by (1.4.36) in the

ferroelectric phase. Thus there is a jump [see Fig. (1.4.12)] in the value of Ps at Tc, meaning

thereby that the spontaneous polarization (the order parameter) drops discontinuously to zero

at T = Tc when a ferroelectric crystal is heated slowly. Such transitions are called the first-
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order transitions. The other important property of these transitions is that there is a latent

heat at the transition. A well known example of this type of transition is the upper transition

in a BaTiO3 crystal.

Fig. 1.4.10. a) Free energy as a function of polarisation as the temperature is varied near a

first order phase transition. (b) Fall of the spontaneous polarisation below the transition point

Tc in a first order phase transition.

1.4.5 Ferroelectric Domains

When a ferroelectric is cooled from the paraelectric phase through the Curie

temperature, the polarized phase may be nucleated at several points in the crystal. These

nuclei generally differ in the direction of polarization since there may be several equivalent

crystallographic directions in which the spontaneous polarization can occur. In the case of

BaTiO3, the spontaneous polarization may occur along any one of the three edges, giving six

possible directions for the spontaneous polarization. Thus, as the nuclei grow through the

crystal in the ferroelectric crystal in the ferroelectric phase, they form several regions or

domains differing in their direction of polarization. The vector sum of these polarizations

may not be always big enough to show up macroscopically.

Polarization is accompanied by some distortion of the unit cell and the domain walls

are consequently in a state of strain; but the dimensional changes are relatively small.

Though the domain walls act as interruptions in the regularity of the crystal, they are not

regarded as grain boundaries between different crystals. A domain wall is instead, treated as

a sub-grain within a single crystal. As soon as a single nucleus of the polarized phase is

T
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formed, the polarized phase begins to grow much faster in the direction of polarization than

in the transverse directions. Because of this reason the growing domains are usually wedge-

shaped. This was revealed by optical birefringence studies on BaTiO3.

The ferroelectric domains are regarded as the electrical analogues of the

ferromagnetic domains despite the fact that there are some interesting differences in their

origin and growth. When the electric field is applied on a ferroelectric crystal, the number

and size of domains that are polarized in the field increase. As a result of this effect, upon

the reversal of the field direction a hysteresis in the P versus E curve is observed.

1.4.6 Antiferroelectricity

Similar to ferroelectrics there is another group of solids, which has induced, ordered electric

dipoles below a characteristic temperature but do not show spontaneous bulk polarization. In

these crystals the neighbouring atomic lines are associated with antiparallel polarization

because of which the bulk polarization of the crystal vanishes. Crystals exhibiting this

property are called antiferroelectric crystals and the property is known as

antiferroelectricity. The structural requirement for the ferroelectrics and antiferroelectric

phases being common, a number of well-known antiferroelectric crystals are found to be

isomorphous with some ferroelectrics. For example, ammonium dihydrogen phosphate

(ADP) is isomorphous with potassium dihydrogen phosphate (KDP).

Perovskite type crystals are known to be susceptible to several types of deformation

with almost equal energy difference between them. In many of them the coupling through the

oxygen octahedral causes adjacent lines of basic cells to be polarized in opposite directions.

Below a certain temperature the resultant deformation is such that the total energy in the

antiparallel arrangement of adjacent lines of dipoles is lower, when compared separately to

that in state of fully parallel arrangement of dipoles and to that in the state with no induced

dipoles. Lead Zirconate (PbZrO3) is a notable example of these perovskites. It shows to

antiferroelectric phases, one each ferroelectric and paraelectric phases over different

ranges of temperature.

1.4.7 Summary of lesson

The origin of ferroelectric property and classification of various ferroelectric materials have

been discussed in depth. The theory relating to first order and second order transition of

BaTiO3 has also been presented systematically. The phenomenon of antiferroelectricity has

also been explained briefly.
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1.4.8 Key-Terminology

Piezoelecticity-pyroelectricity-ferroelectricity-antiferroelectricity-polarization catastrophe-

ferroelectric first-order and second order transitions.

1.4.9 Self-assessment questions

1. Explain piezoelectric, pyroelectric and ferroelectric crystals.

2. Discuss about the representative crystal types of ferroelectrics.

3. Explain the ferroelectric properties of Rochelle salt.

4. Explain the ferroelectric properties of BaTiO3.

5. Discuss the ferroelectric transitions in perovskites based on polarization

catastrophe.

6. Discuss the ferroelectric transitions in perovskites based on soft mode

approach.

7. Explain the thermodynamic theory of ferroelectric transition for both second-

order and first-order transitions.

1.4.10 Reference Books

1. Solid State Physics- A.J.Dekker (Macmillan India Limited).

2. Elements of Solid state Physics- J.P.Srivastava ( Prentice-Hall of India, New Delhi).



UNIT-I

LESSON –5

PIEZOELECTRICITY

Objective

To discuss the concepts of piezoelectricity and electrostriction in piezoelectric crystals and

also the applications of piezoelectric crystals.

Structure of the lesson

1.5.1.. Introduction

1.5.2 Electrostriction

1.5.3 Applications of piezoelectric crystals

1.5.1 Introduction

Piezoelectricity is the ability of certain dielectric crystals to produce a voltage when

subjected to mechanical stress. The word is derived from the Greek piezein, which means to

squeeze or press. The effect is reversible; piezoelectric crystals, subject to an externally

applied voltage, can change shape by a small amount. The effect is of the order of

nanometres, but nevertheless finds useful applications such as the production and detection

of sound, generation of high voltages, electronic frequency generation, and ultra fine

focusing of optical assemblies.

History

Pyroelectricity, the ability of certain mineral crystals to generate electrical charge

when heated, was known of as early as the 18th century, and was named by David Brewster

in 1824. In 1880, Pierre Curie and Jacques Curie brothers predicted and demonstrated

piezoelectricity using tinfoil, glue, wire, magnets, and a jeweler's saw. They showed that

crystals of tourmaline, quartz, topaz, cane sugar, and Rochelle salt generate electrical

polarization from mechanical stress. Quartz and Rochelle salt exhibited the most

piezoelectricity. Twenty natural crystal classes exhibit direct piezoelectricity.

Converse piezoelectricity was mathematically deduced from fundamental

thermodynamic principles by Lippmann in 1881. The Curies immediately confirmed the

existence of the "converse effect," and went on to obtain quantitative proof of the complete

reversibility of electro-elasto-mechanical deformations in piezoelectric crystals.
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Piezoelectric materials

In addition to the materials listed above, many other materials exhibit the

piezoelectric effect, including quartz analogue crystals like berlinite (AlPO4) and gallium

orthophosphate (GaPO4), ceramics with perovskite or tungsten-bronze structures (BaTiO3,

KNbO3, LiNbO3, LiTaO3, BiFeO3, NaxWO3, Ba2NaNb5O5, Pb2KNb5O15). Polymer materials

like rubber, wool, hair, wood fiber, and silk exhibit piezoelectricity to some extent. The

polymer polyvinylidene fluoride, (-CH2-CF2-)n, exhibits piezoelectricity several times larger

than quartz. Bone exhibits some piezoelectric properties: it has been hypothesized that this is

part of the mechanism of bone remodelling in response to stress.

Mechanism of piezoelectricity

In a piezoelectric crystal, the positive and negative electrical charges are separated,

but symmetrically distributed, so that the crystal overall is electrically neutral. When a stress

is applied, this symmetry is disturbed, and the charge asymmetry generates a voltage. A 1 cm

cube of quartz with 500 lbf (2 kN) of correctly applied force upon it, can produce 12,500 V

of electricity.

Piezoelectric materials also show the opposite effect, called converse

piezoelectricity, where application of an electrical field creates mechanical stress (distortion)

in the crystal. Because the charges inside the crystal are separated, the applied voltage affects

different points within the crystal differently, resulting in the distortion. The bending forces

generated by converse piezoelectricity are extremely high, of the order of tens of mega

newtons, and usually cannot be constrained. The only reason the force is usually not noticed

is because it causes a displacement of the order of a few nanometres.

Requirements for a crystal to show piezoelectric behaviour were discussed in the

previous Lesson. We showed earlier that all ferroelectrics are piezoelectrics and that its

converse is not true. For example, quartz is piezoelectric but it does not possess the

ferroelectric property.

The foremost condition for a crystal to piezoelectric is the absence of the centre of

symmetry. Figure 1.5.1(a) shows the array of a simple two-dimensional ionic crystal with no

centre of symmetry. It is evident that a compressive force F [Fig. 1.5.1(b)] decreases the
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electric dipole moment (hence the polarization) and a tensile force F [Fig. 1.5.1(c)] increases

the same. This is essentially the piezoelectric effect. We must appreciate that the displayed

crystal [Fig. 11.14(a)] could well be a ferroelectric crystal.

Next we take up another example to show how the symmetry of a non-

centrosymmetric crystal controls firstly the magnitude and direction of polarization when the

crystal is stressed and secondly the crystal dimensions when the crystal is polarized.

Consider a molecule of hypothetical ionic solid which at equilibrium has three

electric dipoles of equal magnitude distributed over 3600 at an interval of 1200. The

molecules belong to the point group 3m and its net dipole moment is zero. But if the

molecule together with the crystal is stressed or compressed along a direction parallel or

antiparallel to one of the three directions of the dipole moment, a net dipole moment would

appear [see Fig. 1.5.2(b) and (c)]. Similarly, a molecule may be distorted by an electric field

applied along one of the three arrows shown in the Fig. 1.5.2(a). The electric field produces

an elongation or contraction of the crystal along the field direction and a length change of

opposite sign in the lateral direction. An applied field that is perpendicular to one of the three

dipole directions in Fig. 1.5.2(a) finds itself perpendicular to a mirror plane of symmetry and,

therefore, is rendered ineffective in changing the crystal dimensions.

(a) (b) (c)

F

F

F

F

Fig. 1.5.1(a) A two-dimensional ionic crystal with no centre of symmetry. (b) Compression
under the action of force F decreases the polarization. (c) Extension of structure under the
action of force F increases the polarization
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Because of lack of centre of symmetry and complex structure of piezoelectrics, their

electrical behaviour under strain or strain behaviour under an electric field is not isotropic in

nature. Nevertheless, a simple picture of the phenomena can be presented in a schematic one-

dimensional notation by the following equations:

P =  d + 0 E :; e =  s + Ed (1.5.1)

where P is the polarization,  the stress, d the piezoelectric strain constant, 0 the permittivity

of free space, E the electrical field,  the dielectric susceptibility, e the strain and s the

elastic compliance constant.

In real crystals, however, the tensile, compressional or shear strains produced by an

electrical field may develop in different directions and depend on the crystal orientation and

the field direction in view of this fact the piezoelectric strain constants, that form a third rank

tensor, are defined as

dik =





















j

k

E

e

where i  x, y, z and k  xx, yy, zz, xy, yz, zx

P P

(a) (c)(b)

Fig. 1.5.2 Response of a piezoelectric molecule to strain: (a) Directions of polarization (in accordance
with symmetry) in a molecule within an undistorted crystal in the state of equilibrium.
The net polarization of the molecules is zero. (b) A vertical tension or a horizontal compression causing
a net polarization. (c) A vertical compression or a horizontal tension causing a net polarization

P = 0
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Depending on the application and the desired behaviour, a crystal is cut so as to have

the parallel faces of the crystal in a specific orientation. An X-cut is defined as a section cut

from the crystal such that the x-axis of the crystal is perpendicular to parallel crystal faces.

In order to obtain certain desirable properties the crystals are sometimes given oblique cut

that is cut at angles is different from 90 degrees with the principal axes.

1.5.2 Electrostriction

It is appropriate to discuss a more universal phenomenon of deformation in crystals

that is caused by an applied electrical field. It refers to the deformation in ionic crystals and

the effect is commonly known electrostriction.

Electrostriction is a property of all electrical non-conductors, or dielectrics that

produces a relatively slight change of shape, or mechanical deformation, under the

application of an electric field. Reversal of the electric field does not reverse the direction of

the deformation.

In the first approximation the deformation of piezoelectric crystal is proportional to

applied electrical field and the stress induced polarization varies linearly with the strain

produced. But in ionic crystals, which do not have to be necessarily piezoelectrics, the strain

is much smaller and proportional to the square of electrical field. We can understand the

origin of electrostriction by appreciating that dipoles created by the applied electrical field

would interact with each other. The inline dipoles attract each other with a repulsive poles

acting perpendicular to the direction of the polarization.

Let p denote the moment of a dipole and r the separation between two inline dipoles.

The value of the electric field caused by a dipole at its in-line neighbour may be written as

E =
3

0

2

4

1

r

p


(1.5.2)

The energy of a dipole in the field U(r) and the corresponding attractive force F are related as

F = -
dr

rdU )(

and Ur) = - p.E

These relations yield

F = -
4

2

0

6

4

1

r

p


(1.5.3)

Similarly, we can find that the repulsive force is given by
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F =
4

2

0

3

4

1

r

p


(1.5.4)

Since p = αE, the attractive force can be expressed as  

F = - 







4

2

0

6

4

1

r




E2 (1.5.5)

To a first approximation the strain or deformation u may be assumed to follow the

Hooke’s law and then

u = -
k

F

where k is the usual force constant in the direction of the in-line dipoles.

Using the expression (1.5.5) in the above relation, we get

U = 







4

2

0

6

4

1

rk




E2 (1.5.6)

Thus, there will occur a compression in the field direction and an extension perpendicular to

the field direction. The above treatment holds for permanent dipoles as well on account of

the effective dipole moment being proportional to the electric field.

1.5.3 Applications of piezoelectric crystals

It may be recalled all ferroelectrics are piezoelectrics, though the conversion is not

true. As a result, ferroelectric materials have been frequently used in many applications that

are based on the principle of piezoelectricity. But, because of importance of properties such

as mechanical and thermal strength the use of certain piezoelectric crystals becomes

inevitable.

Piezoelectric crystals are used in numerous ways:

High-voltage sources

Direct piezoelectricity of some substances like quartz, as mentioned above, can generate

thousands of volts (known as high-voltage differentials).

 Probably the best-known application is the electric cigarette lighter: pressing the

button squeezes an piezoelectric crystal, and the high voltage thus produced ignites

the gas as the current jumps over a small spark gap. The portable electrical sparkers

used to light gas grills or stoves work the same way.
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 A similar idea being researched by the Defense Advanced Research Projects

Agency (DARPA) in the USA in a project called Energy Harvesting, which includes

an attempt to power battlefield equipment by piezoelectric generators embedded in

soldiers' boots.

 A piezoelectric transformer is a type of AC voltage multiplier. Unlike a conventional

transformer, which uses magnetic coupling between input and output, the

piezoelectric transformer uses acoustic coupling. An input voltage is applied across a

short length of a bar of piezoceramic material such as PZT, creating an alternating

stress in the bar by the inverse piezoelectric effect and causing the whole bar to

vibrate. The vibration frequency is chosen to be the resonant frequency of the block,

typically in the 100 kilohertz to 1 megahertz range. A higher output voltage is then

generated across another section of the bar by the piezoelectric effect. Step-up ratios

of more than 1000:1 have been demonstrated. An extra feature of this transformer is

that, by operating it above its resonant frequency, it can be made to appear as an

inductive load, which is useful in circuits that require a controlled soft start.

Sensors

 To detect sound, e.g. piezoelectric microphones (sound waves bend the piezoelectric

material, creating a changing voltage) and piezoelectric pickups for electrically

amplified guitars.

 Piezoelectric oscillators are used to convert mechanical pulses into electrical ones and

vice versa. The crystal in these devices works as a transducer. The acoustic pulses are

used in underwater search (sonars) and other applications. The acoustic pulses are

generated by the piezoelectric transducers excited by electrical fields in almost all

search cases. The generation of ultrasonic waves is invariably accomplished by

exploiting the above principle.

 Piezoelectric microbalances are used as very sensitive chemical and biological

sensors.

 The piezoelectric effect in synthetic poly vinyliden fluoride (PVF2) is about five times

stronger than that in quartz. Being flexible and easy to handle like ultrasonic

transducers, the PVF2 films are frequently used in applications such as monitoring

blood pressure and respiration.
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 Piezoelectric elements are used in electronic drum pads to detect the impact of the

drummer's sticks.

Actuators

As very high voltages correspond to only tiny changes in the width of the crystal, this width

can be changed with better-than-micrometer precision, making piezo crystals the most

important tool for positioning objects with extreme accuracy.

 Loudspeaker: Voltages are converted to mechanical movement of a piezoelectric

polymer film.

 Piezoelectric elements can be used in laser mirror alignment, where their ability to

move a large mass (the mirror mount) over microscopic distances is exploited to

electronically align some laser mirrors. By precisely controlling the distance between

mirrors, the laser electronics can accurately maintain optical conditions inside the

laser cavity to optimize the beam output.

 A related application is the acousto-optic modulator, a device that vibrates a mirror to

give the light reflected off it a Doppler shift. This is useful for fine-tuning a laser's

frequency.

 Atomic force microscopes and scanning tunneling microscopes employ converse

piezoelectricity to keep the sensing needle close to the probe.

Frequency standards

 Quartz clocks employ a tuning fork made from quartz that uses a combination of both

direct and converse piezoelectricity to generate a regularly timed series of electrical

pulses that is used to mark time. The quartz crystal (like any elastic material) has a

precisely defined natural frequency (caused by its shape and size) at which it prefers

to oscillate, and this is used to stabilize the frequency of a periodic voltage applied to

the crystal.

 The same principle is critical in all radio transmitters and receivers, and in computers

where it creates a clock pulse. Both of these usually use a frequency multiplier to

reach the megahertz and gigahertz ranges.
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 Crystals shaped to have a prescribed mechanical resonance frequency are used as

narrow band electrical filters. Only those electrical signals whose frequency is

coincidence with the mechanical vibrational frequency pass through the crystal and

all other are rejected.

 The piezoelectric materials are used as delay lines. When an electrical signal is

converted into an acoustic one to one and of a quartz rod. The signal passes along rod

as an acoustic wave, travelling at velocity of sound. At the other end acoustic may

converted into an electrical signal. The initial signal is thus delayed. Such an

arrangement is often used in communication devices.

Piezoelectric motors

 Types of piezoelectric motor include the well-known travelling-wave motor used for

auto-focus in reflex cameras, inchworm motors for linear motion, and rectangular

four-quadrant motors with high power density (2.5 watt/cm³) and speed ranging from

10 nm/s to 800 mm/s. All these motors work on the same principle. Driven by dual

orthogonal vibration modes with a phase shift of 90°, the contact point between two

surfaces vibrates in an elliptical path, producing a frictional force between the

surfaces. Usually, one surface is fixed causing the other to move. In most

piezoelectric motors the piezoelectric crystal is excited by a sine wave signal at the

resonant frequency of the motor. Using the resonance effect, a much lower voltage

can be used to produce a high vibration amplitude.

1.5.4 SUMMARY OF LESSON

 Piezoelectricity is the ability of certain dielectric crystals to produce a voltage when

subjected to mechanical stress.

 Pierre Curie and Jacques Curie brothers predicted and demonstrated piezoelectricity

in 1880. They showed that crystals of tourmaline, quartz, topaz, cane sugar, and

Rochelle salt generate electrical polarization from mechanical stress.

 Piezoelectric materials also show the opposite effect, called converse piezoelectricity,

where application of an electrical field creates mechanical stress (distortion) in the

crystal.
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 The foremost condition for a crystal to piezoelectric is the absence of the centre of

symmetry.

 Depending on the application and the desired behaviour, a crystal is cut so as to have

the parallel faces of the crystal in a specific orientation. An X-cut is defined as a

section cut from the crystal such that the x-axis of the crystal is perpendicular to

parallel crystal faces.

 Electrostriction is a property of all dielectrics that produces a relatively slight change

of shape, or mechanical deformation, under the application of an electric field.

 Reversal of the electric field does not reverse the direction of the deformation.

 The compression will occur in the field direction and an extension perpendicular to

the field direction.

 Piezoelectric crystals are used in high-voltage sources, sensors, actuators, frequency

standards, piezoelectric motors etc.,

1.5.5 KEY TERMINOLOGY

Piezoelectricity-converse piezoelectricity-electrostriction-applications of piezoelectric

crystal.

1.5.6 SELF-ASSESSMENT QUESTIONS

(i) What is piezoelectricity? Explain the mechanism involved in the occurrence of

piezoelectricity.

(ii) Express piezoelectric strain constants in form of tensor and explain the terms

involved.

(iii) What is electrostriction? Obtain an expression for the relation between strain and

electric field produced in piezoelectric effect.

(iv) Discuss various applications of piezoelectric crystals.

1.5.7 Reference Books

1. Solid State Physics- A.J.Dekker (Macmillan India Limited).

2. Elements of Solid state Physics- J.P.Srivastava ( Prentice-Hall of India, New Delhi).



Unit – II

Lesson - 1

IMPERFECTIONS IN CRYSTALS- I

POINT DEFECTS

Objectives

To give the classification of defects, to discuss in detail point defects and to estimate the

concentration of point defects in metallic and ionic crystals.

Structure of the lesson

2.1.1 Introduction

2.1.2 Point Defects

a) Vacancies

b) Interstitial atoms

c) Colour centres

d) Substitutional impurity atoms

e) Excitons

2.1.3 Lattice defects and configurational entropy

2.1.4. Estimation of concentration of vacancies

a)In metallic crystals

b. In ionic crystals

2.1.1 Introduction

Any deviation in a crystal from perfect periodic structure is called an imperfection or a

defect. Examples of such defect are vacant lattice sites, interstitial atoms, pairs of vacancies

impurities, colour centres etc. A point defect is localized near an atom in a structure in contrast

to the line or plane imperfections. Plane imperfections on the other hand may occur in the initial

stages of the formation of a new crystal structure. Real crystals are imperfect in one way or the

other and the physical properties of the solids are infact controlled by these imperfections. For

example the colour of the crystal arises from imperfections. Similarly the luminescence,

conductivity of the crystal is always dependent on the impurity. The mechanical and plastic

properties are usually controlled by imperfections. This lesson deals with point defects and its

related aspects.
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2.1.2 Point Defects

Vacant lattice sites, interstitial atoms, pairs of vacancies impurities, colour centres etc.

are some of the examples of point defects.

f) Vacancies

A normal lattice site from where an atom is missing is known as Schottky defect or a

vacancy( Fig 2.1.1 ).

Fig : 2.1.1 A plane of a pure alkali halide crystal, showing a vacant negative positive ion site, a

vacant negative ion site, and a coupled pair of vacant sites of opposite sign.

b) Interstitial atom

An atom located at a position different from the normal lattice is known as an interstitial

or Frenkel defect( Fig 2.1.2)

C. Colour Centres

When a crystal (especially the alkali halides like KCl, NaCl etc. ) is exposed to ionizing

radiations like rays or rays or by introducing certain chemical impurities or by heating the

Fig. 2.1.2 Schottky and Frenkel defects in an ionic crystal. The
arrows indicate the displacement of the ions. In a Schottky defect
the ion is moved to the surface of the crystal; in a Frenkel defect
it is removed to an interstitial position
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crystal in excess metallic vapour, the crystal gets coloured. The colour center absorbs visible

light unlike a vacancy. Generally the most popular colour centres are F-centres when an electron

is trapped at the negative ion vacancy this type of colour centres are formed

Fig 2.1.3 An F-center is a negative ion vacancy with one excess electron bound at the

vacancy. The distribution of the excess electron is largely on the positive metal ions adjacent

to the vacant lattice site.

D. Substitutional impurity atom

The presence of a foreign atom in the lattice it may be present at any interstitial position or any

substitution position that is in place of any regular lattice site. In the latter case it is assumed to

have the same valence shell configuration as that of the atom which is replaced. Sometimes these

impurity atoms are essential for the use of the crystals in practical applications. For example

Al2O3 mixed with Cr2O3 ( Ruby ) is used for the production of laser beam. Similarly, when a

crystal like lithium fluoride mixed with manganese is used in radiation dosimetry. The following

is the figure of substitution of NiO in MgO single crystal.

e-
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Fig. 2.1.4. MgO single crystal doped with a small concentration of NiO

E. Excitons :

When a photon of energy greater than the energy of energy gap of the crystal are absorbed the

electron will jump from valence band to conduction band. In this case the holes and electrons are

free to move independently through the crystal. However if the photon energy is less than the

energy gap the electron and hole will have the Coulomb interaction and are bound together as

shown in the Fig. 2.1.5. A bound electron –hole pair connected in this way is known an

exciton. It moves through the crystal transporting excitation energy, but not charge. It is a neutral

mobile entity.

Fig.2.1.5 :An illustration of exciton, a bound electron- hole pair

2.1.3 Lattice defects and configurational entropy

According to thermodynamics, the equilibrium of a solid at temperature ‘T’ is

determined by the minimum value of free energy F = E-TS
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We shall see below that this condition necessarily leads to the existence on a certain

amount of disorder in the lattice at all temperatures above

T > 0 K

The simplest examples of lattice disorder are vacant lattice sites and interstitial atoms.

The latter are atoms occupying positions in the lattice which in the perfect lattice would be

unoccupied. Thermal and configurational entropy’s are denoted as Sth and Scf. According to

Boltzmann relation the thermal entropy can be defined as

Sth = K log Wth ……… (2.1.1)

Wth stands for the number of different ways in which the energy of vibrations may be distributed

over the 3N harmonic oscillators.

Sth = 3 NK [1+log(KT/h)] ……… (2.1.2)

The configurational entropy of a crystal has nothing to do with the distribution energy . It

is determined solely by the number of different ways (Wcf) in which the atoms may be arranged

over the available no of lattice sites. For example a lattice containing ‘Na’ atoms of type ‘A’

and ‘Nb’ atoms of type ‘B’ and assume that lattice sites are equivalent in the sense that a given

lattice site may be occupied by A (or) B.

Wcf =
!!

)!(

ba

ba

NN

NN 
……… (2.1.3)

The Configurational energy is given by

Scf = K log Wcf

= K log
!!

)!(

b

b

NNa

NNa 
……… (2.1.4)

For a perfect crystal containing identical atoms and in the absence of any lattice defects.

Wcf =1 and Scf = 0 because there is only one possibility of arrangement of atoms.

The total entropy occurring in the usual thermodynamic formulas is equal to the sum of

the thermal and configurational entropies

S= Sth + Scf` ……… (2.1.5)

The reason for the existence of lattice defects at any temperature T > 0.
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E

n/N

F

T Scf

2.1.4. Estimation of concentration of vacancies

a. In metallic crystals

Suppose in a perfect crystal we produce a certain number of vacant lattice sites by

transferring the atoms from the interior of the crystal to the surface. This will require a certain

amount of energy. i.e. E increases. Consequently F increases and this by itself is thus

unfavourable in the thermodynamic sense. On the other hand the creation of vacancies increases

the disorder in the crystal and thus increases the configurational entropy from zero to certain

value determined by the number of vacancies produced.

The configurational energy associated with the possible arrangements of N atoms and n

vacancies over a total of (N+n) lattice sites is

Scf = K log
!!

)!(

nN

nN 

It has been assumed for simplicity that the thermal energy is independent of n/N . The

equilibrium corresponds to the minimum value of F at temperature T .

Consider a perfect lattice containing N similar atoms at a temperature T the free energy

Fig : 2.1.6 Schematic representation of the energy and the configurational entropy term as lattice

sites n/N.
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of this crystal is denoted by Fperfect(T). Suppose we create n vacant lattice sites. Let the energy

required to create one vacancy be v . We assume that v is independent of n . We assume that

no two vacancies are nearest neighbours of each other. The free energy of imperfect crystal is

then increased by nv relative to that of the perfect crystal. Configurational entropy is also

associated with the imperfect crystal , furthermore we assume that thermal entropy increases per

vacancy by an amount Sth

The free energy of actual crystal is,

Fa = Fp+nv
 -T(Sa-Sp)- KT log 




 

!!

)!(

nN

nN
…..(2.1.6)

Where ‘Sa’ is the thermal energy of actual crystal.

Under the equilibrium condition

0












Tn

F
…..(2.1.7)

Tn

F












=v Sth –KT  nnNNnNnN

T
loglog)log()( 




= 0

v Sth –KT  nnN
T

log1)log(1 



=0

or v Sth + KT 







)log(

nN

n
= 0 …..(2.1.8)

or 







)log(

nN

n
= -v Sth/K

since N >> n, 





)log(

N

n
= -v Sth/K

 n/N = e -v eSth/K ……… (2.1.9 )

In general a change in the thermal entropy is negligible in this case , hence equation 2.1.5

becomes

n/N = e -or n= N e -v   ……… (2.1.10 )

For metals v is of the order of 1 electron volt.
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b. In ionic crystsals

Crystal lattice in thermal equilibrium contains a certain number of lattice defects. Ionic crystal

composition may be written as A+ B- . Positive ion vacancies are produced

by a number of successive jumps of positive ions. The result would be equivalent to taking a

positive ion some where from the interior of the crystal and placing it at the surface. Suppose

that a number of positive ion vacancies would have been produced in this manner, while the

negative ion lattice remains perfect. The surface of the crystal then contains an excess positive

charge, the interior an excess of negative charge. Thus space charges would be set up. These

space charges oppose the formation of more positive ion vacancies.

On the other hand the field setup by the space charges would be favour to the formation

of negative ion vacancy. Hence in order to build up space charges and ionic crystal should

contain equal number of negative and positive ion vacancies.

If energy require producing a positive ion vacancy and is energy require producing

a negative ion vacancy.

The total energy  =    

he free energy of a perfect crystal is

Fp = Ep –TS 

Fp is the sum of binding energy as well as vibrational energy. The entropy is thermal entropy

only for a perfect crystal, the configurational entropy vanishes.

Let a crystal contains n + and n- ion vacancies.

Then the configurational energy is

Scf = K log Wcf = K log
2

!!

)!(





 

nN

nN
….. (2.1.13)

The free energy of actual crystal is,

Fa = Fp+n -T(Sa-Sp)-2KT log
2

!!

)!(





 

nN

nN
…..(2.1.14)

Where ‘Sa’ is the thermal energy of actual crystal.

sth is resulting from the production of +ve ion vacancy by

n sth = Sa – Sp …..(2.1.15)
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Under the equilibrium condition

0
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Sth = 2KT 







)log(

nN

n
…..(2.1.16)

The experimental term containing the change in thermal entropy per vacancy Sth / 2

may be calculated on the basis of Einstein model.

Let ‘’ is the frequency of the ion neighbouring a vacancy in actual cystal ( ’<

 hen the actual crystal contains a 6zn no of linear harmonic oscillators of frequency ’

and (6n- 6zn ) no of linear harmonic oscillators of frequency  where z is the number of the

nearest of neighbours surrounding a vacancy then the thermal entropy of perfect and actual

crystal are

Sp= K log p = 6NK log 








'h

KT
+ 6Nk …..(2.1.17)

Sa = 6 Zn K log 








'h

KT
+ ( 6 N -6 Zn) K 1log 

















h

KT
…..(2.1.18)

From the equations 2.1.7 and 2.1.8

Sa = Sp + 6 Zn K log 








'


…..(2.1.19)

or Sth = 6 ZnK log 








'


…..(2.1.20)

Hence n= N e -e 3NZ log 








'



n/N = C e -     …..(2.1.21)

 

  where C =
NZ3

'













Interstitial ions are combination with vacancies also occur for example a positive ion may jump

into an interstitial positions, leaving a vacancy behind. If the vacancy and interfacial ion are far

enough, a part to prevent an immediate recombination known as Frenkel defects. In this case it is
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not necessary to have equal number of positive and negative Frankel defects, because their

formation does not require the setting up of a space charges over macroscopic distances. Their

calculation of their density as a function of energy required to produce a Frankel defect is

especially the same as that given above Schotty defects. i.e. one finds an expression for the free

energy of a crystal containing n defects and minimizes F.

We are neglecting thermal entropy changes in this case.

n = (N Ni )1/2 e-KT …..(2.1.22)

Where N is number of ions under consideration. Ni is the number of possible interstitial

positions in the crystal. is the energy required to produce a Frenkel defect.

2.1.5 Summary of the lesson

Brief classification of various defect in crystals has been presented. The connection

between the configurational entropy and the defect in crystals has also been discussed. Equation

for the concentration of vacancies both in metallic and ionic crystals has been derived.

2.1.6 Key Terminology

Point defects – Vacancies – Interstitial atoms – Colour centres – Excitons Configurational

entropy .

2.1.7 Self – Assessment questions

1. Give an account of the classification of various point defects in crystals.

2. Discuss the connection between the configurational entropy and lattice defects.

3. Derive the expressions for the concentration of vacancies in metallic and ionic crystals.

2.1.8 Reference Books :

1. Elements of Solid State Physics – J.P.Srivastava ( PHI, New Delhi, 2003)

2. Introduction to Solid state Physics – C.Kittel ( Wiley Eastern, New Delhi, 2003)

3. Solid state Physical Electronics - Aldert van der Ziet ( Prentice –Hall of India, New

Delhi, 1971)

4. Solid State Physics – A. J.Dekker ( Macmillan , Madras, 1986)

5. Indroduction to Solids - Leonid V.Azaroff ( Tata McGraw-Hill Publishing Co.,

Bombay , 1978)



Unit - II

Lesson - 2

IMPERFECTIONS IN CRYSTALS – II

LINE AND PLANAR DEFECTS

Objectives

To discuss in detail the Line defects like Edge and screw dislocations and the two

dimensional defects such as planar defects an to explain the role of dislocations in the crystal

growth.

Structure of the lesson

2.2.1. Introduction

2.2.2. Line Defects

a. Edge dislocation

b. Screw dislocation

c. Plane Defects ( Grain boundaries)

2.2.3. Stress fields of dislocations

2.2.4. Dislocations and crystal growth

2.2.1. Introduction

Line defect is another type of defect comes under one dimensional defect. The example

of this defect is dislocation. In this a part of lattice undergoes a shearing strain equal to one

lattice vector called a Burger’s vector. There are two types of dislocations known as edge

dislocation and screw dislocation and any general dislocation is a combination of both. In this

chapter the formation and structure of these defects have been discussed. Description of the two

dimensional or the planar defects like grain boundaries has also been presented in this chapter.

2.2.2. Line Defects

a. Edge dislocation

It occurs when the periodicity of the atomic lattice array is interrupted along certain

directions in a crystal. Such dislocations occur along the rows of a crystal structure and so are

called line defects. An edge dislocation is formed by missing of row of atoms or when a row of

atoms is displaced ( see the figures below).
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Fig 2.2.1. An edge dislocation EF in the glide plane ABCD. The figure shows the slipped

region ABEF in which the atoms have been displaced by more than half a lattice constant

and the unslipped region FECD with displacement less than half a lattice constant.

Fig 2.2.2. Structure of an angle dislocation. The deformation may be thought of as

caused by inserting an extra plane of atoms on the upper half of the y axis. Atoms in the

upper half-crystal are compressed by the insertion; those in the lower half are extended.

Fig 2.2.3. Motion of a dislocation under a shear tending to move the upper surface of the

specimen to the right.
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The vector representing the lattice displacement is called Burger’s vector denoted by ‘b’. In the

edge dislocation the Burger’s vector is perpendicular to the dislocation line.

b. Screw dislocation

The formation of a screw dislocation can be understood as follows: cut a perfect crystal partway

through, then force the material on one side of the cut to move up with respect to the material.

On other side by one unit of atomic spacing and finally glue the material on the two sides in this

condition. The dislocation marks the boundary between the displaced and un-displaced parts of

the crystal. The Burger’s vector is again used to describe the displacement. It is a type of

dislocation in which the dislocation line(Burger’s Vector) is parallel to the slip direction.

Fig 2.2.4. A screw dislocation. A part ABEF of the slip plane has slipped in the direction

parallel to the dislocation line EF.

Fig. 2.2.5. Another view of a screw dislocation. The broken vertical line which marks the

dislocation is surrounded by strained material.

c. Plane Defects ( Grain boundaries)

These defects have an extension in an area and are confined to a small region. It is a boundary

between two adjacent perfect regions in the same crystal which are slightly tilted with respect to

each other or it may also be understood as a junction of two single crystals along a common
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planar surface. These imperfections are common in poly crystalline materials which contain a

large number of crystals. The two common examples of grain boundaries are tilt and twist grain

boundaries. The first one is a result of a linear a sequence of edge dislocations where as the

second one is result of a sequence of screw dislocations. The general grain boundaries (low

angle grain boundaries) are the mixture of these two.

Fig 2.2.6. A view of typical low angle grain boundary

2.2.3. STRESS FIELDS OF DISLOCATIONS

The properties of the dislocations are in general determined by the stress fields they produce

inside the material. The calculations of these fields is usually carried out with the assumption

that the medium is isotropic and characterized by shear modulus G and poisons ratio 

Consider a cylindrical crystal that has been sheared in the axial direction (Z axis). The shearing

is as shown in Fig. 2.2.7. Suppose we produce a cut in the plane Y=0 which extended between

the axis and the outer surface. Let the material above the cut slip to the left by an amount ‘b’

leading to the configuration as shown by the dotted line. We thus have produced a positive edge

dislocation along the Z axis a burgers vector along the X axis.
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Fig 2.2.7. An edge dislocation along the z-axis in a cylindrical piece of material.

The plane Y=0 is the slip plane. In terms of the coordinates r and  the stress filed of the

dislocation line may be shown to be given by the following tensile and shear stresses

rr =  =
  12 r

Gb
sin     

 r = r=   12 r

Gb
cos     

Where

 rr = radial compression or tension

Compression or tension acting in a plane perpendicular to r

rShear stress acting in radial direction

On the basis of these results the energy formation of dislocation, of unit length can be

shown to be equal to

 
dr

r

Gb
R

ro

  122

1 2

=
)1(4

2

 

Gb
log(R/r0) 

Where R is the radius of the piece of material.

For a screw dislocation along the Z axis in a cylindrical piece of material, the stress

field is completely given by a shear stress:

z =z = Gb/2  r 
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2.2.4. Dislocations and crystal growth

Consider the growth of a crystal by hanging a small piece of crystal in a vopour of same

kind of atoms. In some cases, it was observed that the dislocations are a controlling factor in

crystal growth. When crystals are grown in conditions of low super saturation, of the order of 1

percent, it has been observed that the growth rate is enormously faster than that calculated for an

ideal crystal. The actual growth rate is explained by Frank. It terms of the effect of dislocations

on growth.

The theory of growth of ideal crystals predicts that in crystal growth from vapour a super

saturation ( pressure / equilibrium vapor pressure) of the order of 10 is required to nucleate new

crystals, of the order of 5 to form liquid drops, and of 1.5 to form a two dimensional mono layer

of molecules on the face of a perfect crystal. However there is a large disagreement

between the growth rate and experimental growth rate. This is because of the presence of screw

dislocations during the growth of the crystals. The crystal will grow in spiral fashion at the edge

of the discontinuity as shown in Fig. 2.2.8. The calculated growth rates of this mechanism are in

good agreements with observations. We expect that nearly all crystals in nature grown at low

super saturation will contain dislocations, as otherwise they could not have grown.

Fig 2.2.8. The intersection of a screw dislocation with a free surface to produce a spiral step.

Spiral growth patterns have been observed on a large number of crystals. A beautiful

example of the growth pattern from a single screw dislocation is given in Fig 2.2.8.

If the growth rate is independent of direction of the edge in the plane of the surface, the

growth pattern is an Archimedes spiral,

r = a 
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where a is a constant . The limiting minimum radius of curvature near the dislocation is

determined by the super saturation if the radius of curvature is too small, atoms on the curved

edge evaporate until the equilibrium curvature is attained.

Away from the origin each part of the step acquires new atoms at a constant rate, so that dr/dt =

Constant.

2.2.5. Stacking faults.

Consider a crystal. Let the nth layer of it is a closest packing is an A layer and the (n + 1)th layer

is supposed to be a B layer ( See the Fig. 2.2.x ) but because of a "mistake" in the stacking

sequence it is a C layer instead. It is said that a stacking fault has been introduced between the

nth and (n + l)th layer in that case. For example, consider the stacking sequences

… ABABABCBCBC... ...ABCABCBCABCA ... (21)

...hhhhhchhhhh... ...cccccchhccccccccc...

In the first case, a stacking fault has occurred on one side of the c layer. (The choice of the side

is based on which sequence is deemed to be the correct one.) In the second case, the stacking

fault clearly lies between the two h layers.

The stacking fault can be produced by at least two distinct mechanisms. When a closest

packing of atoms forms in a crystal during its growth, it is possible for a new layer to start

incorrectly;

Fig. 2.2.9. Formation of stacking faults

That is, a C layer can start to grow instead of the B layer required by the preceding stacking

sequence. If the crystal grows sufficiently rapidly, this so-called growth fault is incorporated in

the final crystal. Similarly, it is possible to displace the atoms in, say, a B layer to the sites of a C
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layer during plastic deformation of the crystal. (This actually takes place by the relative motion

of the two parts of the crystal.) The energy of a stacking fault, therefore, can be calculated by

taking into account the interactions between next-nearest neighbors only. (The contribution due

to next-next-nearest neighbors is small so that it can be neglected.) The measured values of this

energy are 19 ergs/cm2 in copper and between 100 to 200 ergs/cm2 in aluminum.

It is also possible to describe the production of deformation faults in terms of

dislocations. Consider the hexagonal closest-packed layer, say the A layer shown in Fig. 2.2.9.

Suppose that the next layer above is a B layer. It can be displaced along the Burgers vector S to

produce a unit f dislocation. Actually, it is much easier to displace the layer to the , neighboring

C sites. Remember, the nearest-neighbor forces acting on : each atom are not affected by this

change.) When such a partial dislocation is formed in a closest packing, a stacking fault is

produced. It is evident that the atoms probably move in a zigzag path so that it is not surprising

that stacking faults have been found to exist in plastically deformed face-centered cubic metals.

2.2.5 Summary of lesson

The formation of screw and edge dislocations has been discussed. The role played by

dislocations in the crystal growth has also been described. The geometrical structure of the grain

boundaries in the crystals has also been presented. The brief summary of the general defects in

the crystals is given below
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2.2.6 Key Terminology

Line defects - Edge dislocation – Screw dislocation –Grain boundaries – Stress fields

2.2.7 Self – assessment questions

1. Discuss briefly the formation of edge and screw dislocations

2. Write a note on planar defects.

3. Derive the expression for ht stress filed of dislocations.

4. Discuss the role dislocations in the crystal growth

Type of imperfection Description of imperfection

Point defects

Interstitial Extra atom in an interstitial site

Schottky defects Atom missing from correct site

Frenkel defect Atom displaced to interstitial site creating

nearby

Line defects

Edge dislocation Row of atoms marking edge of a

crystallographic plane extending only part

way in crystal

Screw dislocation Row of atoms about which a normal

crystallographic plane appears to spiral

Plane defects

Lineage boundary Boundary between two adjacent perfect

regions in the same crystal that are slightly

tilted with respect to each other

Grain boundary Boundary between two crystals in a

polycrystallinc solid

Stacking fault Boundary between two parts of a closest

packing having alternate stacking

sequences.
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2.2.8 Reference Books :

1. Elements of Solid State Physics – J.P.Srivastava ( PHI, New Delhi, 2003)

2. Introduction to Solid state Physics – C.Kittel ( Wiley Eastern, New Delhi, 2003)
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U n i t - 2

Lesson – 3

MAGNETIC PROPERTIES- DIA MAGNETISM

Objective of the lesson

This chapter is aimed to make the student familiar with certain fundamentals related to magnetic

properties of the materials. Further it is also planned to discuss the general quantum theory of

magnetic susceptibility and also of diamagnetism in particular.

Structure of the lesson

2.3.1. Introduction

2.3.2 Measurement of susceptibility

2.3.3. Atomic magnetic moment

2.3.4. Quantum theory of magnetic susceptibility

2.3.5. Diamagnetism

2.3.1 Introduction

The permanent atomic magnetism (paramagnetism) cannot be accounted for without

restricting the circulating electrons to the discrete stationary orbits as required in the

Bohr’s quantum theoretical model of the Hydrogen atom. In the classical picture, there

can be no magnetic moment associated with the current of circulating electrons because

electrons in accelerated motion would radiate and finally fall on the nucleus, causing the

atomic structure to collapse. Hence the magnetism is essentially a quantum effect. The two

fundamental forms of magnetism, Diamagnetism and paramagnetism have their origin in

induced and permanent magnetic moments respectively. Diamagnetism, where the applied

magnetic field is pushed out of the system, can be appreciated similarly by realizing that

the discrete quantum states occupied by electrons are stable to a certain extent only

against external perturbations, like a magnetic field in the present case. Paramagnetism

can be accounted for with restricting the circulating electrons to the discrete stationary orbits as

mentioned in Bohr’s quantum mechanical atomic model of hydrogen atom.

We define below the certain fundamental physical quantities that concern the

magnetic properties of materials. In vacuum, the intensity of the applied magnetic field H and

the magnetic induction B are related by the equation.



Solid State Physics 2 Diamagnetism

0

0

B

M
 

B = H0 ………. (2.3.1)

Where 0 is the permeability of free space ( 7
0 104  x V S/A m.)

The magnetic state of a system is specified by its magnetization M, defined as the

magnetic moment per unit volume. M is related to B and H by

B = 0 (H + M) ………. (2.3.2)

For convenience in discussions it is a practice to introduce an external induction such that

HB 00 

Mostly , there is a linear relationship between 0B and M given by 00 BM  

Giving ………. (2.3.3)

Where  is called the magnetic susceptibility.

Substances with a negative magnetic susceptibility are called diamagnetic substances with a

positive susceptibility are called paramagnetic.

2.3.2 Measurement of susceptibility

The magnetic contribution to the energy density of a magnetized specimen is 2

2

1
H ,

provided  is independent of H. The force on a unit volume is the gradient of the energy

density. The x- component of the force on a small specimen of volume V is











dx

dH
VHH

dx

d
VFx .

2

1 2  ………. (2.3.4)

provided the field H and the derivative dH / dx do not vary appreciably over the volume (this

why the specimen must be small). Given below is the method known as Gouy’s method to

measure the magnetic susceptibility of a paramagnetic substance.
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Fig 2.3.1 . Measurement of magnetic susceptibility by Gouy’s method

In this method (Fig. 2.3.1.) a long cylindrical sample is suspended halfway into a strong

field H: one end of the sample is in the maximum field and the other end is in a region where

the field is negligible. The total force under these conditions on a specimen of cross – sectional

area A is

  22

2

1

2

1
AHH

dx

d
dxAFx  = mg ………. (2.3.5)

 mg / AH2 emu ………. (2.3.6)

where mg is the weight loss of the sample in the presence of magnetic field H. By measuring

mg and H, the applied field one can calculate the susceptibility 

2.3.3. Atomic magnetic moment

Suppose an electron is orbiting with an angular frequency  in an atom of radius r then

according to amperes law the moment l of the current loop is given by, area of the loop x

current . This can be shown as

l = - ( e/2m) ( r x p)

= - ( e/2m) x orbital angular momentum
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here e is the charge of the electron, m is the mass of the electron and p is the linear momentum.

When the atom is subjected to an external magnetic field, the orbital motion or the orbital

frequency of the electron and as a result its magnetic moment will be affected as shown in the

Fig.2.3.2. If an electron from an atom which satisfies the Bohr’s quantization condition

possesses angular momentum L then its magnetic moment is defined as

l = l
m

e










2


= lB ………. (2.3.7)

Fig. 2.3.2. Effect of the magnetic field (Bo) on the magnetic moment of the electron.

where B is the Bohr Magneton = B 









m

e

2


= 9.2742 x 10-24 J/Tm……. (2.3.8)

Similarly the magnetic moment due to the spin motion of the electron is represented by

s and it is expressed as

s = -go B s ………. (2.3.9)

where go is called the electron g- factor whose value is given by 2.0023 for a free electron and s

is the spin quantum number which is equal to 1/2.

For the calculation of magnetic moment of an atom or an ion which contains more than one

electron, , we combine the vectorially, the individual orbital and spin angular momenta either by

L-S coupling or by j-j coupling. By taking
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 L = i i and  S = i is , one can have the total angular momentum, as

 J =  L +  S ………. (2.3.10)

where J is the total quantum number. Then the total magnetic moment J is related to J as

J  B L+ goS) = g B J

with L+ goS) = gJ ………. (2.3.11)

where g is called Landes splitting factor for L-S (or Russel – Sanders) coupling the value

of g is given by

2*

2*2*2*

2
1

J

LSJ
g


 ………. (2.3.12)

with )1(*  jjJ , )1(*  L and )1(*  ssS

If we take the value of go as 2.0000 instead of 2.0023 the magnetic moment may be expressed

as

   B L+ 2S) ………. (2.3.13)

2.3.4. Quantum theory of magnetic susceptibility

Magnetization or the intensity of magnetization of a quantum mechanical system having

N magnetic ions per unit volume at T=0 is defined as

M =
H

HE
N






)(0 ……….(2.3.14)

Where E0(H) is the ionic ground state energy in the presence of the field H.

In the state of thermal equilibrium at T, the thermal average of each excited state of

energy En(H) gives the measure of magnetization, i.e.

M(T)=
























n

n

n

n
n

KT

E

KT

E
M

exp

exp

……….(2.3.15)

where Mn=
H

HE
N n






)(

Thermodynamically the intensity of magnetization is defined as

M =
H

F
N



 ……….(2.3.16)
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Where F is the magnetic Helmholtz free energy.

The general definition of susceptibility gives


H

M



  2

2

H

F




    ……….(2.3.17)

ut, in most of the cases, M is found to be very accurately linear in H for attainable field

strengths. In such a case, the definition of  reduces to

  
H

M0      ……….(2.3.18)

A quantum mechanical approach of the magnetic susceptibility is discussed below.

The part of the Hamiltonian operator of the energy of an atomic dipole in a magnetic

field H owing to its orbital magnetic moment L is

HL = - L . H = B L . H ……….(2.3.19a)

 

 HS = - S . H = B S . H ……….(2.3.19b)

where, Sz = 
i

i
zs with i

zs = i
2

1
( i is a Pauli spin matrix )

It is assumed here that the magnetic field is applied along the z- direction. In the presence of a

magnetic filed, the linear momentum of an electron is given by

Pfield = p+ eA(r) ……….(2.3.20)

where P is the liner momentum of the electron in the absence of the field and A denotes the

vector potential related to H as, H = curl A with div A=0.

For a homogeneous field, a possible choice of a vector potential is

A= - rXH
2

1
……….(2.3.21)

A a result, we can write the kinetic energy part of the Hamiltonian as

Hkin =  









i
ii Hxr

e
p

m

2

22

1
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= T0 + B L . H +  
i

ii yxH
m

e
)(

8
222

2

……….(2.3.22)

where T0 is the kinetic energy in the absence of the field and L= 
i

ri x pi

Combining the spin term ( 2.3.19b ) with (2.3.22) , we get the total interaction

Hamiltonian as

H = B(L + goS). H + ……….(2.3.23)

Changes in energy affected by ( 2.3.23) even with the strongest magnetic fields that can be

produced in a laboratory are very small on the scale of atomic excitation energies. Hence it may

be justified to follow the ordinary perturbation approach for calculating the changes in electron

energies induced by a magnetic field.

The dependence of susceptibility on the second derivative of energy ( 2.3.18) indicated

that it would be sufficient to confine the perturbation calculations to second order terms. If

energy En changes be En on applying the field, this change according to the standard result of

the second order perturbation theory is expressed as

 nE nn H   + 
 







nn nn

nn

EE

H
2


……….(2.3.24)

where n denotes the eigen function of the nth energy state.

On Substituting H from (2.3.23) and retaining terms up to those in quadratic in H, we obtain

.HE Bn  nn SgL  0 +
 







nn nn

nn

EE

SgLH
2

0B ).( 

+ n
i

iin yxH
m

e
   )(

8
222

2

……….(2.3.25)

This relation serves as the basis for the description of magnetic susceptibility of

individual atoms, ions or molecules. It can also applied to ionic and molecular solids by

computing the susceptibility ion by ion, provided the concerned solid may be regarded as a

collection of only slightly deformed ions.

 
i

ii yxH
m

e
)(

8
222

2
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2.3.5. Diamagnetism

Consider the case of a solid composed of ions whose all electronic shells are filled. An ion has

zero spin and orbital angular momentum in its ground state represented by the wave function 0 ,

i.e.

J 0000   SL ……….(2.3.26)

In relation (2.3.25), only the last term contributes to the field-induced shift in the ground state

energy

E0 = 0
22

0
2

2

)(
8

  
i

ii yxH
m

e

= 0
2

0
2

2

12
 

i
irH

m

e
……….(2.3.27)

In the state of thermal equilibrium ions are generally in their ground state, excepting the situation

at high temperatures. Therefore, the susceptibility of a solid with N atoms or ions per unit

volume at room temperature is given as

=  2

0
2

H

E






=  0
2

0

2
0

6





i
ir

m

Ne
……….(2.3.28)

If there are Z electrons in an ion, the mean square radius of the ion may be defined by

2r
Z

r
i

i 0
2

0  
……….(2.3.29)

This leads to

 =  2
2

0

6
r

m

NZe
……….(2.3.30)

which is same as obtained on the basis of purely classical considerations.
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2.3.6 Summary of the lesson

Certain fundamental quantities related to magnetic properties of the materials has been

discussed. A brief description of the experiment to measure the magnetic susceptibility has been

given. The general quantum theory of magnetic susceptibility has been discussed in depth. The

expression for diamagnetic susceptibility on the basis of quantum theory has also been derived.

2.3.7 Key terminology

Magnetic moment – Magnetic susceptibility – Quantum theory – Diamagnetism

2.3.8 Self assessment questions

1. Define the magnetic susceptibility and describe an experiment to measure the magnetic

susceptibility.

2. Give the quantum mechanical formulation of magnetic susceptibility

3. Derive the expression for diamagnetic susceptibility by the quantum mechanical

approach.

2.3.9 Reference Books

1. Elements of Solid State Physics – J.P.Srivastava ( PHI, New Delhi, 2003)

2. Introduction to Solid state Physics – C.Kittel ( Wiley Eastern, New Delhi, 2003)

3. Solid State Physics – A. J.Dekker ( Macmillan , Madras, 1986)



Unit-2

Lesson – 4 .

MAGNETIC PROPERTIES- PARA MAGNETISM

Objective of the lesson

 To discuss the quantum theory of paramagnetism and to derive Curie’s law

Structure of the lesson

2.4.1. Introduction

2.4.2 Quantum theory of paramagnetism

2.4.3 Susceptibility and Curie’s law

2.4.4. Application to magnetic ions in solids: Effect of the crystal Field

2.4.1 Introduction

According to classical theory the atomic magnets can have any orientation of

electronic orbits with respect to the external magnetic field applied. The number of magnetic

dipoles that posses potential energy U = -  . H are proportional, to exp(-U/KT).

Then the dipole moment of the dipoles along the field directions present within the solid angle

dis equal to exp(-U/KT)  cosdThen the average dipole moment is given by

 =

















 

0

/

0

/ ..

de

dCose

KTHCos

KTHCos

……..(2.4.1)

=Coth a- 1/a = L(a) ……..(2.4.2)

is known as Langevin’s function. Here a = H/KT. Then the total magnetization,

M =NL(H/KT).

As long as H/KT << 1, M = N/3KT or  N/3KT

 = C / T ……..(2.4.3)

This is known as Curie’s law. However according to the quantum theory the magnetic moment

of a given atom or ion is not freely rotating but restricted to a finite set of orientation relative to
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the applied field. In this chapter we derive the magnetic susceptibility of the paramagnetic

materials based up on this concept.

2.4.2 Quantum theory of paramagnetism

Consider a medium containing N atoms per unit volume , the total quantum number each

atom being J gives raise to the possible components of the magnetic moment ,

MJ g where MJ = J, (J-1), ……. –(J-1) , -J

where MJ is the magnetic quantum number associated with J.

Then the number of dipoles whose P.E. is -MJ g Hare proportional to

KTHMg BedN / or KTHgM BcedN / ……..(2.4.4)

Since the magnetic moment associated with each dipole is Mg  The total magnetic dipole

moment is given by

= B

J

J

KTHMg gMce B 




/ ……..(2.4.5)

Average magnetic dipole moment
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……..(2.4.6)

As T and H are kept constant. Let us assume x = g then


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
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e
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but


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
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e
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= )(log Mxe
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……..(2.4.8)
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Multiply with ‘N’ on both sides (where a = jx)
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is called Brillioun’s function.

Case - I :- If j =  then

a
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= Cot ha-1/a = L(a) ……..(2.4.13)

Where L(a) is called Langevin’s function. It has been found that equation is good

agreement with experiment result in comparison to the results obtained from classical

equation. Where ‘N’ is No. of atoms in magnet per unit volume.
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Case - II :- For J=1/2 then B(a) = 2 Cot h 2a - Cot h a = Tan h a

ahTan
M

M a

0


……..(2.4.14)

The variation of Brilliouin’s function with H for different values of J is as shown in Fig 2.4.1

The lowest curve indicates Langevin’s curve.

The experimental plot of magnetic moment verses H/T for certain materials is shown in Fig

2.4.2. As T →0 , the magnetic moment goes to its saturation value which means that the 

magnetic diploes will align completely with the field direction .

J=1/2

J=

B(a)

a

Fig.2.4.1
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2.4.3 Susceptibility and Curie’s law :

When a << 1 i.e . Jx <<1 or JgBH/KT << 1 means for low fields or higher temperatures
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0M
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 = C/T ; where C =
K

jjNg B

3

)1(22 
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3

2
……..(2.4.16)

is called as Curie constant .

  C/T ……..(2.4.17)

This is Curie’s Law. i.e. If temperature decreases  increases.

H/T (k G K-1)

Fig. 2.4.2. Magnetic moment verses H/T for certain materials I .Potassium
chromium alum , II Ferric ammonium alum , III Gadolinium sulphate octahydrate
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In the equation 2.4.11  )1( jjg B ) ……..(2.4.18)

is known as the effective magnetic moment .The order of magnitude of the paramagnetic

susceptibility of a solid per cm3 may be estimated from (2.4.15). With N1022 and a dipole

moment of one Bohr magneton , one obtains 1/300T. At room temperature 
at 10 K,

 . These values are of importance in connection with the following question which

may arise in the theory of the dielectric polarization of a solid it was necessary to introduce the

internal electric field ,i.e., the actual field acting on a given atom was represented by sum of the

applied field and the field due to polarization of the surroundings .On the other hand , in the

derivation of magnetic susceptibility above , the field acting on a dipole in a paramagnetic solid

was assumed to be equal to the field H. The justification for this is the following : the order of

magnitude of the internal field is given by H+= H(1+, where  Hence the fractional

error made in neglecting the internal field correction is of the order of . As we have seen above

, this small for paramagnetic materials .

The variation of effective magnetic moment for trivalent positive rare earth ions as a function of

number of electrons evaluated using equation 2.4.18 is given in Fig 2.4.2

Fig 2.4.3 Variation of effective magnetic moment for trivalent positive rare earth ions as a

function of number of electrons
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2.4.4 Application to magnetic ions in solids: Effect of the crystal Field

Insulating solids containing rare earth ions obey the Curie law very well. The -values

(the effective Bohr Magneton numbers , equation 2.4.18) are derived from the coefficient of

1/T in using the measured values of  . These are in exceedingly good agreement with those

calculated with for all rare earth ions excepting samarium and europium. For both of these ions

the J-multiple lying just above the ground state is very close in energy as a consequence of

which a couple of assumptions made in the derivation of the Curie law remain no more valid :

1. 1. The second term is ignored in the derivation of the Curie law

becomes important because the denominators ( 1nn EE  ) are now very small.

2. 2. There is an appreciable probability of thermally exciting some ions from the state(s) of lowest

J to higher states, contrary to what is assumes for deriving the Curie law.

These observations explain the discrepancy noticed in respect of samarium and europium

ions. Thus these observations lead to the conclusion that the rare earth ions can be treated as

free ions even in solids. Effective magnetic moments for the trivalent lanthanide group ions are

given in Table 2.4.1.

Table 2.4.1.Effective magnetic moments for the trivalent lanthanide group ions

Ion Configuration Basic level  )1( jjg B )  (exp)

Ce3+ 4f1 5s2p6 2F5/2 2.54 2.4

Pr3+ 4f2 5s2p6 3H4 3.58 3.5

Nd3+ 4f3 5s2p6 4I9/2 3.62 3.5

Pm3+ 4f4 5s2p6 5I4 2.68 -

Sm3+ 4f5 5s2p6 6H5/2 0.84 1.5

Eu3+ 4f6 5s2p6 7F0 0 3.4

Gd3+ 4f7 5s2p6 8S7/2 7.94 8.0

Tb3+ 4f8 5s2p6 7F6 9.72 9.5

Dy3+ 4f9 5s2p6 6H15/2 10.63 10.6

Ho3+ 4f10 5s2p6 5I8 10.60 10.4

Er3+ 4f11 5s2p6 4I15/2 9.59 9.5

Tm3+ 4f12 5s2p6 3H6 7.57 7.3

Yb3+ 4f13 5s2p6 2F7/2 4.54 4.5
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3d transition metal ions (the iron group). In the case of 3d transition metal ions, although the

Curie law is obeyed, the experimental -values are not accounted for by equation 2.4.13 . The

agreement is close only if J is replaced by S in the relation, assuming that L is zero though S

will be still given by the Hund’s rules. This phenomenon is known as quenching of the orbital

angular momentum and attributed to the crystal field effect. The crystal field effect is stronger

in transition metal ions since their partially filled d-shell (3d in the iron group) happens to be the

outermost shell. The electrons in the d-shell are thus directly exposed to the electric field

created by ions surrounding the magnetic ion of concern. The coupling between L and S is

largely broken so that the states are no longer specified by their J values. Further, the (2L + 1)

sublevels belonging to a certain L and degenerate in the free ion may be split by the crystal field.

The splitting decreases the contribution of the orbital motion to the magnetic moment.

Table 2.4.2 . Effective magnetic moments for the iron group ions

Ion Configuration Basic level  )1( jjg B )  )1( ssg B )  (exp)

Ti3+,V4+ 3d1 2D3/2 1.55 1.73 1.8

V3+ 3d2 3F2 1.63 2.83 2.8

Cr3+,V2+ 3d3 4F3/2 0.77 3.87 3.8

Mn3+,Cr2+ 3d4 5D0 0 4.90 4.9

Fe3+,Mn2+ 3d5 6S5/2 5.92 5.92 5.9

Fe2+ 3d6 5D4 6.70 4.90 5.4

Co2+ 3d7 4F9/2 6.63 3.87 4.8

Ni2+ 3d8 3F4 5.59 2.83 3.2

Cu2+ 3d9 2D5/2 3.55 1.73 1.9

On the other hand, the crystal field effect for rare earth is almost negligible since their

partially-filled shell (4f) lies deep inside the ion, sheltered by 5s and 5p shells. This explains

why these ions behave as almost free ions even when they are embedded in crystals.

2.4.5 Summary

The difference between classical and quantum theory of paramagnetism have been

discussed. Based upon the quantum theory the expression for magnetic susceptibility of

paramagnet material has been derived. The paramagnetic properties of the materials containing

rare earth ions and transition metal ions have also been discussed briefly.
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2.4.6 Key terminology

Quantum Theory – Paramagnetism – Magnetic Susceptibility –Curie’s Law– Crystal

Field .

2.4.7 Self assessment Questions

1. Mention the differences between classical and quantum theory of paramagnetism

2. Discuss the quantum theory of paramagnetism. Derive Curie’s law for paramagnetic

material.

3. Discuss briefly the effect of crystal field on paramagnetic properties of solids.

2.4.8 Reference Books :

1. Elements of Solid State Physics – J.P.Srivastava ( PHI, New Delhi, 2003)

2. Introduction to Solid state Physics – C.Kittel ( Wiley Eastern, New Delhi, 2003)

3. Solid State Physics – A. J.Dekker ( Macmillan , Madras, 1986)



Unit - II

Lesson 5

TYPES OF PARAMAGNETISM

Objective of the lesson

This chapter is aimed to discuss different contributions to the paramagnetism. It is also

discussing with theory behind the method of cooling by adiabatic demagnetization.

Structure of the lesson

2.5.1 Introduction

2.5.2 van Vleck paramagnetism

2.5.3. Nuclear paramagnetism

2.5.4. Cooling by adiabatic demagnetization

2.5.1 Introduction

This chapter is aimed to discuss various types of paramagnetisms like vanVleck, Nuclear

paramagnetism etc. More specifically the paramagnetic properties the material that contains the

atoms of partially filled shells with J=0 have been discussed. The contribution to the

paramagnetism from the nucleus magnetic moments has also been explained. Further the

attainment of very low temperatures by the method of adiabatic demagnetization has also been

described.

2.5.2 van Vleck paramagnetism

Consider the case of a partially-filled shell with J = 0, giving a non-degenerate ground

state. It is the case of ions whose partially-filled shell is one electron short of being half filled.

In a filled shell too, J = 0. But the present case is different in the sense that the second term in
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2.3.25 does not vanish here, though it does so for ions having only completely occupies shell,

simply because L and S are both independently zero for a completely filled shell. Hence the

shift in the ground state energy induced by the magnetic filed in the present case is written as
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If the system has N such ions per unit volume,
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In the above equation the first term with negative sign represents the diamagnetic susceptibility.

The second term is an evidence for the paramagnetism it may be regarded as a correction to the

diamagnetic contribution. The paramagnetic term is required to be examined in two extreme

limits.

1. En-E0 <<KT

In this limit , the excess population in the ground state over the excited state of energy En=

N(En-E0 )/2KT
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This gives raise to

M=
kT
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Here is independent of the separation of excited states from the ground state .

2. En-E0 >>KT

In this case all the ions stay in the ground state. Then the magnetization
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This expression indicates the paramagnetic susceptibility is independent of temperature and

commonly known as van Vleck paramagnetism

2.5.3.Nuclear Paramagnetism

In addition to the orbital motion and the spin of electrons, the nuclear spin also

contributes to the magnetic moment of atoms. The nuclear magnetic moment is expressed in

units of the nuclear Magneton in analogy with the Bohr defined by

TJx
M

e

P

n /10051.5
2

27


 ………..(2.5.8)

where MP is the Proton mass.

Comparing with the 2.5.8 with 2.3.8 we see that the nuclear magneton is smaller than

the Bohr magneton in the ratio of the Proton mass to the electron mass ( 103).
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Therefore, the static nuclear paramagnetism is masked by the electron paramagnetism in

paramagnetic substances. Solid hydrogen shows nuclear paramagnetism, though its electron

configuration suggests diamagnetism only. The value of Proton magnetic moment is verified by

these measurements. Heavy nuclei are found to possess even smaller magnetic moments. The

method of nuclear magnetic resonance (NMR) is used to determine the nuclear magnetic

moments. The nuclear magnetic moments, being very small compared to the electronic

components, are almost ignored while discussing static magnetization. A comparative view of

various forms of paramagnetism and diamagnetism are shown in Fig.2.5.1

2.5.4. Cooling by adiabatic demagnetization

For cooling below 1K, normally adiabatic demagnetization method is used. the selection of an

appropriate system is not easy because at these low temperatures there is hardly any entropy left

in any system. There may be only some solids suitable for the purpose. The

Pauli Paramagnetism

Fig. 2.5.1. A comparative view of various forms of para
magnetism and diamagnetism, giving  versus T plot.

Langevin paramagnetism

van Vleck paramagnetism

Larmor diamagnetism

Landau diamagnetism

T



0
+

-
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lattice entropy of a solid, at 1 K with D 100K it is merely ~ 10-4 N KB. ( KB- Boltzmann’s

constant) Hence this method is suitable only for paramagnetic solids which possess appreciable

spin entropy. The underline principle is to apply magnetic field to reduce the entropy of

paramagnetic salt immersed in liquid helium. The creation of a more ordered state of spins leads

to the reduction of entropy. The liquid helium absorbs any head liberated in the process. The

salt is then removed from the liquid helium bath and the magnetic field is switched on under

adiabatic conditions implying that the entropy remains unchanged. The field is switched off

slowly to ensure that the system passes through states always in thermal equilibrium. The

temperature will have to fall if the entropy is to remain unchanged even after the magnetic field

is completely withdrawn. In order to preserve the cooling thus produced, no heat should flow

into the spin system. The most likely source of heat is the lattice entropy. Therefore, it is most

important that the lattice entropy of the salt be smaller than its spin entropy to disallow heating.

Salts containing rare earth elements because of their larger magnetic moments adequately satisfy

the above condition and, therefore, used for adiabatic demagnetization.

Consider an entirely disordered spin system at high temperatures where the thermal

disorder overpowers magnetic interactions that could produce any preferential spin orientations.

A spin system of N ions, each of spin J, has (2J + 1) states in total over which the spins are

distributed. If W represents the number of possible ways of distribution in a quantized spin

system, the entropy S of the system is defined by

S = K ln W
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Therefore, W = (2J +1)N

Showing that the entropy is temperature independent in the absence of a magnetic field.

For J = ½, the entropy is equal to NK ln 2. It shows that even for a two-level system, the

spin entropy is far greater than the lattice entropy around 1 K (~10-4NkB). On the application of

a magnetic filed H, the (2J + 1) states are separated in energy is lowered when the lower levels

gain in population. When the magnetic field is withdrawn adiabatically, the temperature falls so

that the entropy may remain unchanged as required in an adiabatic change. A theoretical basis

for this phenomenon is discussed below.

The entropy is defined in terms of the Helmholtz free energy F and the internal energy U as

T

FU
S


 )( FUK   ………. (2.5.9)

with  1/KT. Further, we learn from relation that for a system of non-interacting paramagnetic

ions, F depends on H only though the product H . his requires F to be of the form

)(
1

HfF 


 ………. (2.5.10)

Where )( Hf  denotes a function of the product )( H

Since U can be expressed as

 FU 



 ………. (2.5.11)

The expression for entropy can now be written using 2.5.9 as









F
KS 2
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or using 2.5.10,  )()( 1 HHfHfKS   ………. (2.5.12)

This relation indicates that S, also dependents on the product H . Thus, if S is constant, H

also remains constant.  H/T is also constant. Hence

   
Final

Final

Initial

Initial

T

H

T

H


initial

Initial

final

final xT
H

H
T

)(

)(
 ………. (2.5.13)

Instead of switching off the field, if we decrease it adiabatically to a certain value,

according to 2.5.13, then, Tfinal < Tinitial

The lowest possible temperature can be determined by the equation 2.5.12. In principle,

we could even reach the absolute zero, if this relation is absolutely valid. Had it been true, the

zero field entropy would not have been found to be temperature dependent as shown in Fig.

2.5.2.

Fig. 2.5.2. Plot of entropy versus temperature cooling curves for interacting spins at various
values of external induction Bo in an adiabatic demagnetization process.
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The observed temperature dependence leads to the conclusion that the entropy will really drop to

zero as the absolute zero is approached, a result that is consistent with the third law of

thermodynamics. Therefore, the condition must fail at small fields to account for the

temperature dependence of the zero-field entropy. In fact, even after the magnetic field is

completely withdrawn there remains a magnetic field, though weak, mainly contributed by

magnetic interactions between paramagnetic ions. This field in some cases may be as large as

100 gauss around 1 K.

When this aspect and other effects, such as strong crystal field splittings at low temperatures, are

taken into consideration, the temperature dependence in question is properly explained using the

resultant modified expression for entropy.

The process of cooling by adiabatic demagnetization is explained in Fig 2.5.2. with the

help of S versus T curves for different magnetic fields. Initially, the paramagnetic salt rests

immersed in liquid helium. The vertical line AB represents the first step of operation where the

entropy is isothermally reduced from its initial value at A to a lower value at B by applying a

magnetic field B4 . Notice that the point A lies on the zero-field S versus T curve and the point

B on a curve obtained in the presence of the field B4. There are other curves for fields lowers

than 1234 BBBB  . The S versus T behaviour in the absence of a magnetic field as

predicted by simple theory and as observed as shown by two separate curves.

In the next step, the salt is removed from the liquid helium bath and the field reduced

under adiabatic conditions (but slowly) through B3, B2, B1 . . . . to zero value. The operation is

represented by the horizontal line BC. The intersection of BC with



Acharya Nagarjuna University 9 Centre for Distance Education

various S versus T curves gives the temperature T3 > T2 > T1 corresponding to the fields B3,

B2 & B1 at three different stages during the process of adiabatic demagnetization. The lowest

temperature approached is shown as Tf symbolized by the point C on the observed zero-field

curve. As mentioned earlier, the lowest temperatures produced by adiabatic demagnetization are

in the rage of 10-3K.

2.5.5 Summary of the lesson

Different contributions to the paramagnetism like van Vlek paramagnetism, nuclear

paramagnetism etc., have been discussed. The theory behind in cooling the material by adiabatic

demagnetization has also been included.

2.5.6 Key terminology

van Vlek paramagnetism- Nuclear paramagnetism – Adiabatic demagnetization-

2.5.7 Self assessment questions

1. Discuss the concept of van Valek paramagnetism.

2. Explain the nuclear contribution to the paramagnetism.

3. Give the theory on cooling of the materials by adiabatic demagnetization

2.5.8 Reference Books

1. Elements of Solid State Physics – J.P.Srivastava ( PHI, New Delhi, 2003)

2. Introduction to Solid state Physics – C.Kittel ( Wiley Eastern, New Delhi, 2003)

3. Solid State Physics – A. J.Dekker ( Macmillan , Madras, 1986).



UNIT -3

LESSON – 1

FERROMAGNETISM

Objective of the lesson

The objective of this lesson is to discuss the properties of ferromagnetic materials based on the

quantum mechanical theory. It is also intended to interpret the phenomenon of ferromagnetism

on the basis of the concept of domains.

Structure of the lesson

3.1.1. Introduction

3.1.2. Weiss theory of Ferromagnetism

3.1.3. Relationship between saturation magnetization and temperature

3.1.4. Ferromagnetic Domains

3.1.1. Introduction

Iron, cobalt, nickel and their alloys are well known Ferromagnetic materials since a long

time. These materials exhibit hysteris loop. The susceptibility of these materials obeys Curie-

Weiss law. i.e.  = c/T-. Above the Curie temperature these materials act as paramagnets.

Ferromagnetic specimens in general contain a number of small regions called domains which are

spontaneously polarized. There exists a molecular filed within each domain and filed leads to

produce parallel alignment of individual localized atomic moments. Based on these points, Weiss

developed a formula for susceptibility of ferromagnetic materials.

3.1.2. Weiss theory of Ferromagnetism

In order to explain the relation between Para and Ferro magnets as well as to

account for the special features of Ferromagnetics, Weiss gave his molecular theory.

Weiss theory is centered about the following two hypotheses.

1. A ferromagnetic specimen contains a number of small regions called “domain” which are

spontaneously magnetized.

2. With in each domain, the spontaneous magnetization is due to the existence of internal

molecular field, which tends to produce a parallel alignment of the atomic dipoles. The internal

field is proportional to the intensity of magnetization
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Tw MH 

or TWw MNH  ……….(3.1.1)

MT - Magnetization at the temperature T, w - Weiss constant. If H is external magnetic

fields, the effective field acting on the ion (or) atom.

from the definition of the susceptibility,  = MT/H

or MT = H = H
KT

n B

3

22
……….(3.1.2)

The value of  is substituted from the quantum theory of paramagnetism.

Taking Heff = H+NW MT in 3.1.2,.
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is known as Curie - Weiss Law. In the equ. (3.1.4)

K

n
C J

3

2
 and

K

Nn WJ
W

3

2
  = C' Nw

are called as the Curie constant and Ferro magnetic Curie temperature respectively.

From the paramagnetic theory we have MT=M0 B(a), where a = g J H/KT. In this case

a = g J w MT)/KT. ……….(3.1.5)

Since we are interested in spontaneous magnetization if we keep H=0 ( the applied field) in

3.1.5. we get

MT= KT a / gJ BNW ……….(3.1.6)
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Since MT should satisfy the equations MT=M0 B(a) and 3.1.6. Its value at a given temperature

can be obtained from the point of intersection of the two corresponding MT verses “a” curves as

shown in the Fig. 3.1.1.

Fig. 3.1.1. Graphical method of finding spontaneous magnetization at a temperature T.

The straight line in Fig. 3.1.1 indicates that the slope is proportional to T. If T<a non

vanishing value for spontaneous magnetization exists. For T =  the slope of the straight line

represented by the equation. 3.1.6. is equal to tangent of the curve at the origin. If T >  the

spontaneous magnetization vanishes. In the Table 3.1.1 the Curie temperature and saturation

magnetization for some of the ferromagnetic substances are presented.

MT

a

Langevin’s curve
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Table 3.1.1.

Substance Saturation magnetization Ms in gauss Ferromagnetic Curie

temp. in K

Fe 1707 1740 1043

Co 1400 1446 1400

Ni 485 510 631

Gd - 2010 292

Dy - 2920 85

Cu2MnAl 500 (550) 710

MnAs 670 870 318

MnBi 620 680 630

Mn4N 183 - 743

MnSb 710 - 587

MnB 152 163 578

CrTe 247 - 339

CrBr3 - - 37

CrO2 515 - 392

MnOFe2O3 410 - 573

FeOFe2O3 480 - 858

CoOFe2O3 400 - 793

NiOFe2O3 270 - 858

CuOFe2O3 135 - 728

MgOFe2O3 110 - 713

UH3 - 230 180

EuO - 1920 69

GdMn2 - 215 303

Gd3Fe5O12 0 605 564

Y3Fe5O12(YIG) 130 200 560

Room Temperature
0 K
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3.1.3. Relationship between saturation magnetization and temperature

At MT=Ms , H=NWMS ,then )(
0
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Now we shall verify this theoretical formula by practical considerations.

(i) If j=1/2 ,
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(ii ) If j = 
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since Coth x = (1/x)+(x/3)-……for j = , Cothx  (1/x) has been used in (3.1.10).The

variation of MT/M0 evaluated using equation 3.1.8 for three different values of j for Fe , Ni , Co ,

are given in Fig 3.1.2
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Fig 3.1.2 The variation of MT/M0 for three different values of j for Fe , Ni , Co .

As the experimental curves for these three metals are coinciding with theoretical curves for j=1/2

.The normal states of free atoms are Fe = 5D4 (j=4) , Co = 5F9/2 (j=9/2) ,Ni= 3F4 (j=4) .For none

of these metals J=1/2 .Hence there is a discrepancy between the theory and the experiment. This

discrepancy can however be overcome if take L = 0. Then, J = L+S = 0+1/2 =1/2 . This

indicates the magnetization associated with electron spins rather than orbital motion. This type of

magnetization is known as the orbital quenching.

3.1.4. Ferromagnetic Domains

It is known that a piece ferromagnetic material may exist in the non magnetized state,

whereas a weak magnetic field may produce saturation magnetization in the same specimen. To

explain this Weiss introduced the domain hypothesis. Each domain is spontaneously magnetized.

The overall magnetization is given by the sum of the domain vectors, which may vanish under

certain circumstances.

M(T)/M(0)

T/
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Magnetization of a specimen may occur either by the growth of one domain at the

expense of another, i.e. by the motion of domain walls (Fig. 19-6b), or by rotation of domains

(Fig. 19-6c). A representative magnetization curve is given in Fig. 19-7, indicating the

predominant processes in the different regions. We may note here that originally it was thought

that the well-known Barkhausen jumps were due to the rotation of a complete domain and that

the size of the Barkhausen discontinuities was a measure of the size of the domains.

However, it was later shown that the Barkhausen jumps are mainly associated with

irregular fluctuations in the motion of the domain walls rather than with domain

rotation..

Fig.3.1.3. Domain structures.

These are different methods for observing the domains, the main method is known as

Bitter powder pattern method. In this method, a few drops of colloidal suspension of

ferromagnetic material, the particles of the suspension will settle upon the walls of domain of

ferromagnetic materials. These boundaries are clearly seen with the help of powerful

microscope.

Fig 3.1.4.Domain structures observed under a microscope for some iron alloys

Ni(78%)-Fe(22%) alloy
Fe containing 4%Si
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On the surface of the specimen; since there are strong local magnetic fields near the domain

boundaries, the particles collect there and the domains can be observed under a microscope.

Domain structures observed under a microscope for some iron alloys are shown in Fig3.1.4.

The ferromagnetic material exhibit hysterics if the external field is increased up to certain

point A, linearity exists between the magnetization and the applied field (Fig.3.1.5.), if the field

is decreased from the point A, then the curve traces its original path. Up to the point A, it is the

reversible wall displacement that contributes to the magnetization. If the field is increased

beyond A, the saturation magnetization is achieved and if the field is decreased from the point of

saturation C, the curve no longer traces the original path and it cuts the Y-axis at a point

indicating the retention of certain magnetization even for H = 0 and that point is known as

retentively. If we want to demagnetize the material completely, the external field is to be

applied in the reverse direction and field is known as coercive field Hc. If the field is reversed in

this way a cycle will be completed as shown in the Fig.3.1.5. This curve is known as hysterisis

loop. The area under the curve represents the loss of energy during magnetization.

Fig. 3.1.5. Magnetization curve of a ferromagnetic substance

The physical origin of domains can be understood from the general thermodynamic

principle that the free energy E -TS of a solid tends to reach a minimum value. As a result of the

high degree of order in the magnetic system, the entropy term may be neglected. Thus,

minimizing the energy E of the system should be sufficient to understand the existence of

domains. To illustrate this point, consider the cross section of a ferromagnetic single crystal Fig.
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3.1.6.. In Fig. 3.1.6.(a) we have a single domain, i.e., the specimen acquired saturation

magnetization. Because of the free magnetic poles at the ends of the specimen, the expression for

the energy will contain a term (1/8) 
2H dV associated with the field outside the crystal. In Fig.

3.1.6.(b) on the other hand, the field energy is strongly reduced because the spatial extension of

the field is much smaller. There is a certain amount of energy involved in producing a domain

wall. Hence, one ultimately arrives at an equilibrium situation with a number of domains such

that the energy required to produce one more domain boundary is equal to the resulting reduction

of the field energy.

Figure 3.1.6. The origin of domains.

A domain structure such as in Fig. 3.1.6.(c ) has zero magnetic field energy. This is

achieved by introducing the triangular prism domains at top and bottom of the crystal; such

domains are called closure domains. Note that the wall between a closure domain and a vertical

domain in Fig. 3.1.6.(c), makes an angle of 450 with the magnetization directions in both types

of domains. Hence the normal component of the magnetization in crossing such a wall is

continuous, i.e., there are no free poles and there is no field energy. The energy required to

produce a closure domain is essentially determined by the anisotropy of the crystal, i.e., by the

fact that ferromagnetic materials have "easy" and "hard" directions of magnetization. For

example, from the magnetization curves represented in Fig. 3.1.7 one sees that in iron, which is

cubic, the easy directions of magnetization are the cube edges.



M.Sc. Physics 10 Ferromagnetism

Fig .3.1.7. Magnetization curves for a single crystal of iron along different directions of

the crystal axis.

In nickel, which is also cubic, the easy directions of magnetization are the body diagonals. In

cobalt the hexagonal axis of the T crystal is the only preferred direction; thus in a cobalt crystal

with b prominent domains magnetized along the hexagonal axis, the closure domains are

necessarily magnetized along a hard direction. In iron and nickel, on the other hand, it is

possible to have both the closure domains and the dominant domains magnetized along easy

directions. Summarizing the ideas discussed above we may say that domain structure has its

origin in the principle of minimum energy.

3.1.5 Summary of the lesson

Wiess theory of ferromagnetism has been discussed briefly using quantum mechanical

concepts and Curie- Weiss law for the susceptibility of the ferromagnetic materials has been

derived. Comparison of the theoretical results with the experimental results has also been

presented. Origin for the spontaneous magnetization has also been discussed using the concept

of domains.

3.1.6 Key Terminology

Wiess theory – Spontaneous magnetization – Hysterisis loop - Domains
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3.1.7 Self – assessment questions

1. Discuss the Wiess theory of ferromagnetism and arrive at an expression for the

susceptibility of ferromagnetic materials.

2. Discuss the dependence of saturation magnetization on temperature..

3. Write a note on ferromagnetic domains.

3.1.8 Reference Books :

1. Elements of Solid State Physics – J.P.Srivastava (PHI, New Delhi, 2003)

2. Introduction to Solid state Physics – C.Kittel (Wiley Eastern, New Delhi, 2003)

3. Solid State Physics – A. J.Dekker (Macmillan , Madras, 1986)



Unit – 3

Lesson – 2

INTERPRETATION OF THE WEISS FIELD AND

THE THEORY OF MAGNONS

Objective of the lesson

To deal with the explanation of the Weiss field-Exchange Interaction

and to discuss spin wave or Magnon theory

Structure of the lesson

3.2.1. Introduction

3.2.2 The interpretation of the Weiss field-Exchange Interaction

3.2.3. Theory of Magnons

3.2.3a Dispersion relation for magnons

3.2.3b Quantization of spin waves

3.2.3c Bloch 2
3

T Law

3.2.1. Introduction

In 1928 Heisenberg showed that the large molecular field may be explained in terms of

exchange interaction between the electrons. The principle of this explanation has been

illustrated by considering the hydrogen molecule as an example . A part of this chapter deals

with the theory of magnons which means quantized spin waves, these are analogous to lattice

vibrations (or) phonons.

3.2.2 The interpretation of the Weiss field-Exchange interaction

In this section we shall discuss Heisenberg’s interpretation of Weiss internal field.First of all, a

rough estimate of the required molecular field Hm may be made as follows. The energy of a

given atomic dipole in this field should be of the order  KH mB  .For a Curie temperature

K1000 this gives Hm 107 gausses. From this one concludes immediately that the internal
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field is not due to a simple dipole-dipole interaction between neighbors, because such fields

would be of the order 33 10/ aB gausses.

Heisenberg showed that the large molecular field may be explained in terms of exchange

interaction between the electrons. The principle of this explanation may be illustrated by

considering the hydrogen molecule. Let the two nuclei of hydrogen molecule be denoted by a

and b, the atomic wave functions by a and b and the electrons by 1and 2. The interaction

potential between the two atoms is then given by











2112

2 1111

abab

ab
rrrr

eV ……….(3.2.1)

From the Heitler-London theory of chemical binding one knows that the energy of the system is

in the form, E = K eJ .where K is the Coulomb interaction energy and Je is the exchange

integral, given by

21
** )1()2()2()1( dvdvVj baabbae  ……….(3.2.2)

The plus sign in the expression for energy E refers to the nonmagnetic state of the molecule

in which the two electronic spins are anti parallel. The minus sign corresponds to the case in

which the two spins are parallel, i.e., to the magnetic state .It is evident from the equation E =

K eJ . that the magnetic state is stable only if Je is positive, because then (K -Je) < (K + Je).

expression for energy E may be written in a more convenient form which contains the relative

orientation of the two spins, viz.,

E= const. -2Je S1.S2 ……….(3.2.3)

In other words, the exchange energy appears in the total energy as if there is a direct coupling

between the two spins. It must be emphasized, however, that the exchange interaction is

fundamentally electrostatic and that the spin enters into the energy expression as a consequence

of the Pauli Exclusion Principle.

We shall now assume that for two atoms i and j the effective coupling between the spins

due to exchange interaction is equivalent with a term -2Je Si.Sj in the energy expression; Je is the

exchange integral for the two atoms. In general, the exchange integral is negative, i.e., in general

the non- ferromagnetic state is favored. However, Je is likely to be positive when the distance rab
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between the nuclei is fairly large compared with the orbital radii of the electrons involved. The

behavior of Je as function of rab is indicated in Fig. 3.2.1.

According to Slater, the ratio rab/ro where ro is the orbital radius should be larger than 3 for Je

to be positive but not much larger. The ratios rab/ro for some metals are given below.

Fe Co N Cr Mn Gd

rab/ro 3.26 3.64 3.94 2.60 2.94 3.1

Note that Cr and Mn are not ferromagnetic. One might raise the question here whether an

element with uncompensated spins, which itself is not ferromagnetic because the rab/ro value is

not favorable, may be combined with another non ferromagnetic element to form a compound

for which the rab/ro value is suitable for ferromagnetism. That this seems indeed possible, for

example MnAs and MnSb are both ferromagnetic; the lattice constants of these compounds are,

respectively, 2.85 and 2.89 Ao, as compared with 2.58 Ao for pure Mn. The ferromagnetism of

the other alloys can be explained in a similar manner.

Because of the importance of the exchange integral, one would like to relate it to the

Weiss constant Nw and to the ferromagnetic Curie temperature. An approximate relationship

between Je and Nw can be found as follows. We assume that the exchange integral is negligible

except for nearest neighbors and that its value is Je for all neighboring pairs. We may then write

for the exchange energy of a given atom i with its neighbors as

j
j

ie SSJV  2 , ……….(3.2.4)

where the summation is taken over to the nearest neighbors of atom i. Replacing the

instantaneous values of the neighboring spins by their time averages that there are z nearest

neighbors to the atom i we get,

Fig. 3.2.1.Behavior of the exchange integral
Je as function of inter atomic distance rab

rab

Je
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 zjziyiyixjxie SSSSSSzJV  2 ……….(3.2.5)

Assuming that the magnetization M is along the z-direction, we may take

0 yjxj SS and NgMS Bzj /

According to (3.2.4) and (3.2.5.),

V= - 2z je Szi M/g NB ……….(3.2.6)

Now, this expression should be equal to the potential energy of spin i in the Weiss field Nw M,

i.e.,

V= - g SziB Nw M ……….(3.2.7)

From the equations (3.2.6) and (3.2.7) we obtain

Nw = 2 z Je / N 22
Bg  ……….(3.2.8)

From the expression for Curie temperature( § 3.1.2), we obtain the relation between f and Je

as

f =2 zJe S(S+1)/3 K ……….(3.2.9)

Thus for a simple cubic lattice with z = 6 and with S = ½ , one finds

Je/K = 1/3 ……….(3.2.10)

more exact calculations by Opechowski and P. R. Weiss give, respectively 0.518 and 0.540

for the Je/Kf for a simple cubic lattice.

3.2.3. Theory of Magnons

Magnon means quantized spin wave, these are analogous to lattice vibrations (or) Phonons.

Consider ith and jth atoms and Si & Sj are their corresponding spins. Then the

energy of the interaction between two spins is

u = -2JeSi.Sj, where eJ is exchange energy

According to Heisenberg model, at T=0 K we can represent all the spins as parallel

vectors. The spin
2

1
S and lie on a single line as shown in Fig.3.2.2
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Fig.3.2.2 The spins as parallel vectors.

Then the spins interaction energy (if there are ‘n’ such type of spins) is

1
1

.2 

 pp

N

p
e SSJU ……….(3.2.11)

Sp stands for pth spin and Sp+1 stands (p+1)th spin

If the temperature of the system is increased, due to thermal agitation some of the spins

may be reversed. Now let us consider the situation, if one of the spins is exited, means one of

spins is in the reverse direction. The reversal of spin is shared by all the other spins also. All the

spins but not limited to the neighbouring spin alone. The situation of the spins corresponding to

this state can be pictured as in Fig 3.2.3. The spin vectors moves in the preferred directions

as shown in the Fig 3.2.3(a) . The heads of spins form a wave as shown in the Fig 3.2.3(b).

Fig 3.2.3 Formation of a spin wave

This wave is knows as spin wave corresponding to each atom, there is a spin wave. The

quantized spin wave is known as “Magnon”.

3.2.3a Dispersion relation for magnons

The interaction energy between magnetic moment and applied magnetic field is

represented by

pp

N

p
B HgU


.

1

 


 = ……….(3.2.12)

pBP Sg


  is the magnetic moment and pH


is the magnetic field at the site p.

Now the interaction between spins is represented by

a

b
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comparing the coefficients of SP in equations (3.2.12)and (3.2.13) ,we get

 11

2
  pp

B

e
p SS

g

j
H




……….(3.2.14)

from the elementary mechanics we know that the rate of change of angular momentum i.e

.,  pS
dt

d
 is equal to torque pp H


 

i.e.  pS
dt

d
 = pp H


 ……….(3.2.15)

  


1
pS

dt

d
( pp H


 ) =



1
p

  







  11

2
pp

B

e SS
g

j



=


12

B

e

g

j


 pB Sg


( ( 11   pp SS ))

=


ej2
 pS


( ( 11   pp SS )) ……….(3.2.16)

Resolving Sp in to three components, we have

    y
p

y
p

z
p

z
p

z
p

y
p

e

x
p

SSSSSS
j

dt

dS
1111

2
 


……….(3.2.17)

    z
p

z
p

x
p

x
p

x
p

z
p

e

y
p

SSSSSS
j

dt

dS
1111

2
 


……….(3.2.18)

    x
p

x
p

y
p

y
p

y
p

x
p

e

z
p

SSSSSS
j

dt

dS
1111

2
 


……….(3.2.19)

 





 
N

P
PPPPe

N

P
PPe SSSSJSSJU

1
11

1
1 22 ……….(3.2.13)
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All these three equations are linear set of equations .If we assume that the amplitude of the

excitation is very small , then x
pS , y

pS «S and SSSS z
p

z
p

z
p   11 ,the equations 3.2.17,3.2.18

and 3.2.19 will be modified to

  y
p

y
p

y
p

e

x
p

SSSSS
j

dt

dS
112

2
 



  x
p

x
p

x
p

e

y
p

SSSS
j

dt

dS
2

2
11  


and ……….(3.2.20)

0
dt

dS z
p

Equation 3.2.20 can be solved by assuming the solution as

 tpkaix
p ueS  and

 tpkaiy
p veS  ……….(3.2.22)

where u, v are amplitudes of spin waves, p is an integer, a is the lattice constant and k is the

propagation constant.

Substituting eqn.3.2.22 in eqn.3.2.21, one gets,

 ui  tpkaie  =        





   tpkaitpkaitpkaie veveveS

j i
 112

2



  ui =




   ikaikae vevevS

j i

2
2


=



























 




2
1

4 ikaika
e e

eSv
j

i



=  vkaS
je cos1

4



……….(3.2.23)

similarly from y component we get

 vi =  ukaS
je cos1

4



……….(3.2.24)

For non-vanishing values of u and v, we must have

 
 

0
1

1
4

4














iCoska

Coskai
SJ

SJ

e

e
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 kaSje cos14  = 








2
sin8 2 ka

Sje ……….(3.2.25)

for small values of ka , 2
22

k
Saje


 2k , ……….(3.2.26)

this is known as the dispersion relation for magnons . A plot between
Sje4


and ka is as

shown in Fig 3.2.4.

Fig 3.2.4. Dispersion relation for Magnon in ferromagnetic material

3.2.3b Quantization of spin waves

If we have got ‘N’ parallel spins in the system each of value S .Then the total spin

quantum number of system if all the spins are parallel is N.S. If the some of the spins are anti-

parallel(exited) the total spin decreases. Now let us find the relation between the amplitude of

the spin wave and reduction of Z-component of total spin quantum number .

The z -component and the amplitude of the spin are related to each other as in the Fig 3.2.5,

Fig 3.2.5

S Sz

u

   01
2

2

42 
SJ Coskae




Sje4



ka




or
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From the Fig. we have,   2/122 uSS z  = 



























S

u
S

S

u
S

S

u
S

22
11

2

2

22/1

2

2

Or S-Sz
S

u

2

2

 ……….(3.2.27)

The spin wave k exited the total spin N.S is reduced by nk. Then the total excited spinsor

magnons of wave vector k are given by

Nnk 
S

uk

2

2

Or
N

Sn
u k

k

22  ……….(3.2.28)

uk is the amplitude of the k-spin wave and nk the integer represents the number of magnons that

are excited. The amplitude is quantized and hence the reduction in the spin (S-Sz) is quantized

i.e., the spin wave is quantized.

The exchange energy given by 3.2.11 depends on cosine of the angle between the spins p and

p+1. The tips of the two spin vectors as shown in the Fig 3.2.5 are separated by a distance

sin(ka/2) so that the angle between the two vectors is given by

2/sin2/sin ka
S

u
 ; for (u/S ) « 1 ,cos

2
sin21 2

2
ka

S

u








 ……….(3.2.29)

The exchange energy is now given by

U  -2JeNS2 + 4Nusin2(ka/2) = -2JeNS2 + 4JeNucoska)

The excitation energy of a spn wave of amplitude uk and wave vector k is

Fig 3.2.5
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k =4JeNu
coska) , substituting the value of uk from 3.2.28 we have ,

k =4JeScoska) nk = kkn  from the equation 3.2.25

Hence the energy of the spin waves can also be taken as integral multiples of k .

i.e., kkk n  ……….(3.2.30)

3.2.3c Bloch 2
3

T Law

We known the expression for the interaction energy as





n

p
ppe SSjU

1
1.2

 Exchange energy, U  1. pp SS .

The number of energy states whose wave vectors lies below ‘k’ then per unit volume is

represented by

3

4

2

1 33
k










. ……….(3.2.31)

Then the No. of mangnons in the range  and d is

We know that,

2
22

k
Sj ae












  k

Sj

dk

d ae 2
2 2














. ……….(3.2.33)

From this

  





















 




 d

SjSj
dD

aee

k

a

2

2/1

22 224

1 
or

  2/1

2/3

22 24

1
k

e a
Sj

D 



















. ……….(3.2.34)

The total number of magnons excited

     dNDn
k

k  . ……….(3.2.35)

    dkd =D
d
dk .3)( 2

3
43

2
1

. ……….(3.2.32)
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dx
e

x
KT

SJ
x

ae

.
)1(

)(
2

1

4

1

0

22

2
1

2
3

2
3

























  2
3

2
3

2
2

)(0587.0

aeSJ

KT


The number of atoms per unit volume is given by
3a

Q
N 

Where Q= No. of atoms per unit volume

= 1 for simple cubic

=2 for b.c.c

=4 for f.c.c

a3 = volume of the unit cell

Where M0 is magnetization at absolute zero.

2
3

2
3

2
0 2.

0587.0
T

SJ

K

SNM

M

ae 








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


















2
3

0

T
M

M







 
d

eSJ
k

ae

.
)1(24

1

0

22

2
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3























 


























 



KT
d

eSJ
kk

ae



 
.

)1(2

1

4

1

0

22

2
12

3


S

N

nk

0M

M

N

n

S

K


= the fractional charge of ground state magnetization =

where x =
KT



. ……….(3.2.36)

. ……….(3.2.37)
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This result is due to Felix bloch, known as the Bloch 2
3

T Law and is found to hold good at low

temperatures. At high temperatures, a high density of magnons is created and the assumes spin

model breaks down, resulting in the invalidity of the law at such temperatures.

3.2.4 Summary of the lesson

Detailed explanation on the Weiss internal molecular field has been given. The spin wave theory

quantization of spin waves and thermal excitation of magnons have been discussed in detail

3.2.5 Key words

Weiss field-Exchange Interaction-Magnons- spin waves -Bloch 2
3

T Law

3.2.6 Self – Assessment questions

1. Explain Weiss internal molecular field in detail.

2. What are magnons ?.Derive the dispersion relation for the magnons.

3. Derive the quantization condition of spin waves .

4. Derive Bloch 2
3

T Law for magnons

3.2.7 Reference Books :

1. Elements of Solid State Physics – J.P.Srivastava ( PHI, New Delhi, 2003)

2. Introduction to Solid state Physics – C.Kittel ( Wiley Eastern, New Delhi, 2003)

3. Solid State Physics – A. J.Dekker ( Macmillan , Madras, 1986)



UNIT -3

LESSON – 3

ANTI- FERROMAGNETISM

Objective of the lesson

To discuss the Neel’s theory of anti-ferromagnetism

Structure of the lesson

3.3.1 Introduction

3.3.2 Neel’s theory

3.3.1 Introduction :

In the case of ferromagnetism, the internal field in ferromagnetic material arises due to

exchange interaction that lines up neighbouring spin moments. For such cases, in

ferromagnetism exchange integral is positive. However, in some compounds and transition

metals, the exchange interaction is negative below a certain critical temperature that leads to anti

parallel alignment of electron spin in the neighbouring atoms. This phenomenon is known as

anti ferromagnetism and that critical temperature is known as Neel’s temperature and above this

temperature the materials behave like paramagnets.

3.3.2 Neel’s theory

Anti ferromagnetism was first investigated by Neel’s and Bitter in MnO. The most characteristic

property of a polycrystalline antiferromagnetic is that its susceptibility shows a maximum as

function of temperature; An example of this behaviour is given in Fig. 3.3.1a. where a graph is

plotted between magnetic susceptibility ‘’ and temperatures ‘T’ for MnF2. For the sake of

comparison the variation of susceptibility with the temperature for paramagnetic and

ferromagnetic materials are also presented in the same figure.This characteristic feature may be
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explained qualitatively on the basis of two sub-lattice model considering the unit cell of MnO.

The alignment of the spins in the unit cell are as shown in the Fig. 3.3.2.

Fig. 3.3.2.Alignment of the spins in the unit cell of MnO

In the two sub lattice model we have two sub-lattices - one parallel and another is anti parallel.

The interaction between parallel and anti-parallel spins gives anti- ferromagnetism. The

manganese ions are at the corners and the oxygen ions are at the centres with opposite spins

Fig 3.3.1a Molar susceptibility ‘’ as a function of temperature ‘T for MnF2 an anti-
ferromagnetic material. Figs b and c represent the same plots for paramagnetic and
ferromagnetic materials

M

T T

M

a-anti-ferromagnet b- paramagnet c- ferromagnet

T

c
M  C

M
T

c







C

M
T

c







c
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(Fig. 3.3.2) A similar saturation can be represented like MnF2 & FeF2 etc. In antiferro

magnetism, we expect two types of interactions.

1. A - B interaction i.e. the interaction between the two anti parallel spins.

2. A - A & B - B interactions i.e. the interaction of parallel spins.

The magnetic field at the sites A and B is given by

Hma=H - Ma -Mb ……….3.3.1

Hmb = H – Ma -Mb ……….3.3.2

Where H is the applied field and Ma and Mb represent the magnetization of the A & B

lattices.  is Weiss constants corresponds to A - A & B - B interactions and  corresponds to

A-B interaction

3.3.2a When T > TN , when the temperature is above the Neel temperature, we are for away

from saturation.

H
KT

N
M a

3

2


with 2=B
2g2J(J+1)

where N is the number of A atoms per unit volume. If we assume that the dipoles on the B sites

are identical with those of the A sites and that there are equal numbers of A and B sites, we may

write similarly,

Substituting equations (3.3.2) in the equations for Ma and Mb gives the following equation for

the total magnetization ba MMM 

=  MH
KT

N



2)(

3

2

…………..3.3.3

Hb
KT

N
M

b 3

2

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This equation becomes a scalar equation if we assume that M and H are parallel. On this

assumption we can solve for the susceptibility, leading to

   
)/(

3/

3/2
2

2





 


 TC

KNT

KN

H

M
………….3.3.4

Where C= KN 3/2 2 and  =    KN 3/2
………….3.3.5

This may be compared with expression for the susceptibility of a magnetic material above the

critical temperature. It is observed that the antiferromagnetic case contains T + rather than T-

 ; moreover the Curie constant C is twice the Curie constant C is twice the Curie constant of

the individual A or B lattice. In order to illustrate the difference between the paramagnetic, the

ferromagnetic, and the antiferromagnetic behavior in the high- temperature region, we have

plotted in Fig. 19-13 I/l versus T. For the three cases one obtains

Fig.3.3.3 . The reciprocal Susceptibility versus temperature for a para-,Ferro-,Antiferro

magnetic material above the critical temperature.

3.3.2b When T = TN ,

At the Neel temperature TN itself, one is still sufficiently far away from saturation

effects to employ the equations given above for Ma and Mb . Thus in the absence of an applied

magnetic field we may write for T = TN, we have,

C

T




1

C

T 






1

C

T 






1
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
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………….3.3.6

and similarly, from Mb, we have ,

0
3

1
3

22

















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


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


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


b
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a
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M
kT

N
M

kT

N






………….3.3.7

The equations 3.3.6 and 3.3.7 have a non-vanishing solution for Ma and Mb only if the

determinant of their coefficients vanishes.

i.e . 












NKT

N

3
1

2

NKT

N

3

2



NKT

N

3

2
 












NKT

N

3
1

2

 TN =  



K

N

3

2

= C()/2 ………….3.3.8

( since 2N 2/3k = C)

The equation 3.3.8 indicates that the Neel temperature

(i) increases as the antiferromagnetic AB interaction () becomes stronger,

(ii) decreases with increasing antiferromagnetic AA and BB interaction ()

= 0
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Relation between the Neel temperature and ,

From the equation 3.3.4 we have

2/)(3/)(2   CkN ………….3.3.9

from equations 3.3.8 and 3.3.9, we get

)/()( 


NT
………….3.3.10

A comparasion of this result with the observed values of TN and  are given in Table

3.3.1 for some anti-ferromagnetic materials It is noted that experimentally TN <  in all cases,

indicating that  must be positive; this in turn seems to indicate that in so far as the present

model is applicable, there is indeed an antiferro- magnetic AA and BB interaction.

Table 3.3.1. Some Parameters of selected Antiferromagnetics.

Compound Crystal

Structure

Cation Lattice

structure

TN (oK) 

NT



MnF2 rutile b.c.tetragonal 72 113 0.76

FeF2 rutile b.c.tetragonal 79 117 0.72

CoF2 rutile b.c.tetragonal 38 53 -

NiF2 rutile b.c.tetragonal 73 116 -

MnO2 rutile b.c.tetragonal 84 316 0.94

MnO NaCl f.c.c. 122 610 0.67

MnS NaCl f.c.c. 165 528 0.82

FeO NaCl f.c.c. 198 570 0.79+

CoO NaCl f.c.c. 292 280 -
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3.3.2c : when T < TN

Let us now consider the susceptibility of an anti-ferromagnetic material below the Neel

temperature; for simplicity we shall assume only AB interaction, i.e., we shall assume  = 0.

First, as a result of crystalline anisotropy, there will be one or more natural spin directions along

which the spins will tend to align themselves. There are therefore two cases of special interest;

(a) An applied magnetic field perpendicular to the natural spin direction.

(b) An applied field parallel to the natural spin direction.

Case (a) has been represented schematically in Fig. 3.3..3

Fig. 3.3.4 Applied magnetic field perpendicular to the natural spin direction.

In the present case, the field tends to line up the dipoles along the field direction, but as a

result of the tendency for the A and B dipoles to remain antiparallel, a compromise is obtained

in which the dipoles make a certain angle  with the original spin direction. To calculate the

susceptibility  for this case, consider one of the dipoles B as made up of two unit poles, as

indicated in Fig. 3.3.4 b. The forces on the positive pole are H and -Ma, as indicated; the

forces on the negative pole are equal but of opposite sign. In equilibrium, the resultant forces

should lie along the line joining the poles.

From the Fig. 3.3.4 b, we have Ma Tan 2 =H ,so that for small angles  we must have

2Ma= H

since Ma = Mb , the total magnetization along the external field direction is equal to

M = (Ma + Mb) = H/ Or  = 1/ ….3.3.11

  is independent of temperature. It can readily be shown that  is equal to the

susceptibility at the Neel temperature when approached from the high-temperature .
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Case (b) applied field parallel to the natural spin direction.

 (b) The calculation of the susceptibility χ║ corresponding to an applied field along the natural

spin direction is much more complicated, since statistical methods involving Brilliouin

functions must be employed. Detailed theoretical calculations show the variation of

susceptibility χ║ with temperature for different J values: the susceptibility rises smoothly from

zero to χ (T N) as the temperature increases.

Fig.3.3.4 The variation of susceptibility χ║ with temperature for different J values:

The susceptibility below the Neel temperature in polycrystalline materials is given by an

average value lying between  and   χ║ ; as a result, one obtains in such cases a susceptibility

versus temperature curve of the type indicated in Fig. 3.3.1 a.

3.3.3 Summary of the lesson

The origin of the anti- ferromagnetism and the detailed theory Neel’s theory

Anti ferromagnetism are discussed in detail. Various cases of anti- ferromagnetic susceptibility

with the temperature have also been discussed at in depth

3.3.4 Key words

Anti- ferromagnetism - Neel’s theory –Neel’s temperature

3.3.5 Self – Assessment questions

1. Discuss briefly Neel’s theory of Anti- ferromagnetism

2.Derive the expressions for anti- ferromagnetic susceptibility at (a) T>TN (b) T=TN

T/TN


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and (c) T<TN

3. Obtain Relation between the Neel temperature and Curie temperature

3.3.6 Reference Books :

1. Elements of Solid State Physics – J.P.Srivastava ( PHI, New Delhi, 2003)

2. Solid State Physics – A. J.Dekker ( Macmillan , Madras, 1986)



Unit : 3

Lesson : 4

Ferrimagnetism

Objective of the lesson

 To discuss the origin of ferrimagnetism

 To explore the structure and characteristics of ferrimagnets

 To discuss the expression for the susceptibility based on Neel’s theory

 To discuss briefly the methods to probe the structure of the magnetically ordered

materials.

 To describe the characteristics of other novel magnetic materials

Structure of the lesson

3.4.1. Introduction

3.4.2. Structure of Ferrites

3.4.3. Characteristics of ferrites

3.4.4. Neel’s theory of Ferrimagnetism

3.4.5. Determination of magnetically ordered structures

3.4.6. Novel magnetic materials

3.4.1. Introduction

The material most popularly called as load-stone with the chemical formula Fe3O4

(magnetite) is probably the oldest magnetic known to mankind. The general formula of this

material is Me2+Fe2
3+O4. where Me2+ stands for divalent ferrous ion or any other another

divalent metal such as Mn, Co, Ni, Cu, Mg, Zn, or Cd, In mixed ferrites the Fe2+ ion is replaced

by a mixture of ions like MnZn.. The d-c resistivity of ferrites is 104 to 1011 times is large as that

of iron. Thus in transformer cores they can be used up to much higher frequencies than iron.
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3.4.2. Structure of Ferrites

The ferrites belong to the large class of compounds which have the spinel structure

(after the mineral spinel, MgAl2O4). The unit cell contains 32 oxygen ions, 16 Fe3+ ions, and 8

divalent metal ions. The total of 24 metal ions, ranging in radius between 0.4 and 1 Ao, are

distributed amongst eight tetrahedral interstices (surrounded by four O2- ions) and sixteen

octahedral interstices (surrounded by six O2- ions).

The distribution of the metal ions is very important for an understanding of the magnetic

properties of these Materials; the following distributions may occur,

3.4.2. a. The "normal" spinel structure :

In this case the structure of ferrite consists 8 divalent metal ions occupy tetrahedral

positions; 16 trivalent iron ions occupy octahedral positions.

The notation for this structure: may be given as

Me2+[Fe2
3+]O4

the brackets around the Fe3+ ions indicating that they occupy octahedral sites.

Examples for this structure are , ZnFe2O4, CdFe2O4

3.4.2. b. Inverse spinel structure of a ferrite,

In this case the divalent Me2+ ions occupy octahedral sites; the Fe3+ ions are distributed in equal

numbers over the tetrahedral and octahedral sites, that means 8 in each site . The arrangement

may thus be represented by

Fe3+[Fe3+Me2+]O4

Examples for this structure are , CoFe2O4, CuFe2O4, MgFe2O4

3.4.2.c. In the intermediate structure we have arrangements of the type

Fex
3+ Me1-x

2+ [Fe2-x
3+Mex

2+] O4
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3.4.3. Characteristics of ferrites

Some of the important characteristics of the ferrimagnetic materials are given below:

1. These materials have got very high resistivity of 10 to 10,000 Mega ohm – cm.

2. The microwave dielectric constant of thes materials is of the order of 10 to 12.

3. The dielectric loss of these materials is extremely low.

4. Magnetic permeability of the ferrites is very high.

5. Saturation magnetic moment is appreciably high but noticeably smaller than the

ferromagnetic materials.

6. The Curie temperature of these materials is very high.

7. Eddy current losses of these materials are very low.

These are all the extra-ordinary properties of the ferromagnetic materials that make them

suitable for industrial applications like microwave devices, isolators and gyrators etc.

3.4.4. Neel’s theory of Ferrimagnetism

In order to explain the magnetic properties of ferrites, Neel in 1948 developed this

theory. The importance of the distribution of the metallic ions over the tetrahedral and

octahedral sites may be illustrated with reference to the saturation magnetization for simple and

mixed ferrites. The ferrites are essentially ionic compounds; the saturation magnetization of

these materials may therefore be calculated from the number of unpaired spins of the ions.

For example, in magnetite, i.e., Fe3+ [Fe2+ Fe3+]O4

the Fe2+ and Fe3+ ions have, six and five 3d electrons respectively.

The magnetic moment of Fe2+ion= 4 B

The magnetic moment of Fe3+ ion=5B

The net magnetic moment per molecule of Fe3O4 is therefore =(4+5)-5 = 4B,

which is in close agreement with the experimental value.
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According to this theory, there exists a "negative" interaction between the ions on the

tetrahedral sites (A sites) and the octahedral sites (B sites) which tends to promote an

antiparallel spin alignment of the A and B ions. Besides this negative AB interaction, we must

also take into account an AA and BB interaction. Thus the ferromagnetic behavior can be

explained in terms of three antiferromagnetic interactions. Neel coined the term

"ferrimagnetism" for this type of behavior.

In order to give the essential features of Neel's theory, we shall consider the relatively

simple case of a ferrite represented by the formula

Fex
3+ Me1-x

2+ [Fe2-x
3+Mex

2+] O4

where Me2+ is a diamagnetic ion. We shall assume that the AB interaction is a negative. The

AA and BB interactions will be represented by a factor -and -respectively, giving the sign

and strength of these interactions relative to the AB interaction. Thus, when  turns out to be

negative, it indicates that the AA interaction is antiferromagnetic.

Let Ma denotes the magnetization associated with the A sites (tetrahedral sites) similarly Mb

denotes the magnetization associated and B sites (octahedral) per gram ion, then the total

magnetization per mole is

M = xMa + (2 -x)Mb . ……….( 3.4.1)

Now, the molecular field Ha acting on an ion occupying an A site may be written as

Ha = H - [(2-x)Mb -xMa ] ……….( 3.4.2)

where H is the applied field, -(2 -x)Mb is due to the negative AB interaction, and xMa is

due to the AA interaction.

Similarly, the molecular field acting on a B atom is given by

Hb = H -[xMa -(2 -x)Mb] ……….( 3.4.3)

We shall first consider the paramagnetic region above the Curie point.

Under these circumstances the partial magnetizations may be assumed to follow a Curie-Weiss

law, i.e.,
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Ma = CmHa/T and Mb = CmHb/T ……….( 3.4.4)

where Cm is the Curie constant per mole; the Cm's are the same for the A and B lattices, because

for the example chosen here, the Fe3+ ions are the only magnetic ions. substituting Ha and Hb ,

we get





 


TC

T

M

H

ommole

11
……….( 3.4.5)

where   22

0

)2()2(24/
1

xxxx  


……….( 3.4.6)

 22 )1)(2()1()2(
16

1
  xxxxCm ……….( 3.4.7)

and )2)(2(
4

1
  xxCm ……….( 3.4.8)

When
mole

1
is plotted against T as per the equation 3.4.5, we get a concave curvature toward

the T-axis. This is well in agreement with experiment. From the shape of the experimental

curves we can find 0 ,  and  ; hence x,  ,  , and  can also be obtained, at least

qualitatively. For several ferrites Neel found that both  and  are negative (i.e., the AA and

BB interactions are also antiferromagnetic). Furthermore,  and  are both <<1, indicating

that the AB interaction predominates over AA and BB interactions in the region above Curie

point.

The spontaneous magnetization in the region below the Neel point

We put H = 0 in (3.4.2) and (3.4.3). Since there are saturation effects, we cannot employ the

Curie- Weiss law, and We therefore must replace equations (3.4.5) by the following general

expressions

)/( kTHgSBNgSM aBSBa  ……….( 3.4.9)

)/( kTHgSBNgSM bBSBb  ……….( 3.4.10)
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here N represents Avogadro’s number, since Ma and Mb refer to a mole.

From these expressions together with (3.4.2) and (3.4.3) (With H= 0)

one can obtain Ma and Mb, i.e., the total magnetization

M= (2 -x)Mb –xMa

as function of T. The solutions depend on the values of x as given in Fig. 3.4.1

Fig. 3.4.1. The calculated spontaneous magnetisation as a function of temperature for

varying ratio of Ferric ions in A and B sites.

We may make here some further remarks on the curves given in Fig.3.4.1. From X-ray

diffraction data it follows that in the mixed zinc ferrites the Zn2+ ions occupy tetrahedral (A)

sites, as they do in the pure zinc ferrite (which has the normal spinal structure). The other

divalent ions Mn2+, Ni2+, etc. occupy octahedral sites and the Fe3+ ions are distributed over the

remaining tetrahedral and octahedral sites. Thus the mixed zinc ferrites satisfy the

representation

  4
2

1
3
1

3
1

2 OMeFeFeZ xxxx











Thus apart from certain details , Neel’s theory describes the experimental observations quite

well.
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3.4.5. Determination of magnetically ordered structures

The use of a slow neutron beam diffraction has certain distinct advantages, especially

while dealing with the magnetically ordered materials when compared with the conventional X-

ray diffraction method. The diffracted X-ray photons provide details about the spatial

distribution of electronic charge, but carry no information about the atomic magnetic moment

vectors in a magnetically ordered structure. On the other hand, a beam of slow neutrons serves as

an excellent probe of local moments since the neutron itself has a magnetic moment which

couples to the spin of elementary moments in a magnetic crystal. As a result of this coupling

there appear peaks, in the diffraction pattern in addition to those belonging to the non-magnetic

Bragg reflection of neutrons by the atomic nuclei.

The advantages of neutron beam are best appreciated in antiferromagnetic solids. As an

example, consider the neutron diffraction pattern of MnO below and above the Neel

temperature (120 K) in Fig. 3.4.2. Several lines in the pattern recorded at 80 K are not observed

at 293 K, simply because the corresponding Bragg reflections originate from the magnetic

ordering which exists no more above 120 K.

Fig. 3.4.2. Neutron diffraction patterns for an aniferromagnetic solid (MnO) below and

above the Neel temperature (120 K).
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Nuclear magnetic resonance offers another way to investigate the microscopic spin structure. For

determining the size of a unit cell of a crystal having magnetic ordering it becomes imperative to

take into consideration not only the equivalence of the sites but also the equivalence of the

magnetic moment vectors located at those sites.

The size of a unit cell for an anti ferromagnetic crystal as obtained by the X-ray diffraction is

just half the size given by the neutron diffraction. The unit cells determined by the two

techniques are referred to as chemical unit cell and magnetic unit cell, respectively. This point is

clarified in Fig. 3.4.3. with the help of the ordering of moments of Mn2+ ions in the unit cell of

RbMnF3 (TN = 54.5 K).

Fig. 3.4.3. Antiferromagnetic ordering of Mn2+ spin moments in a crystal of RbMnF3.

3.4.6. Novel magnetic materials: GMR-CMR Materials

Recently, some magnetic materials are found to exhibit an extraordinarily large

magnetoresistance known as Giant Magneto Resistance (GMR). This spectacular property of

the materials makes them suitable for applications in device applications such as (i) magnetic

recording (memory storage), (ii) actuators and (iii) sensors.
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The first observation concerning GMR was made in respect of Fe/Cr multilayers with

thin Cr layers, prepared by molecular beam epitaxy (MBE). For Cr layers of 9 Ao thickness

the resistivity was found to drop by almost a factor of 2 in a magnetic field of 2T at 4.2 K

(Fig. 3.4.2), giving a negative GMR of about 50 per cent.

Another term Colossal Magneto Resistance (CMR) is often used to describe the

extremely strong influence of the magnetic field. The CMR is defined as

)(

)0()(

)( B

B

B 





 




The GMR-CMR effect is observed generally at low temperatures in the presence of large

Fig.3.4.4 Variation of resistivity of multilayers [(001) Fe 30 Ao /(001) Cr 9 Ao] as a function of

the magnetic field at 4.2 K.

magnetic fields (- a few tesla). But we require to exploit this property ideally near room

temperature and at low fields for enhancing the technological viability of GMR-CMR materials.

Hence, ever since the discovery of GMR and CMR a relentless activity has been on to develop

such materials. Recently, a promising class of magnetic materials with composition R1-

xAxMnO3 (R = La, Nd, Gd, Y; A = Ca, Sr, Ba, Pb) has been identified. These manganites

having perovskite structure have the unique distinction of being paramagnetic and
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semiconducting at high temperatures. They make a transition to the ferromagnetic and metallic

state at low temperatures. This is unusual of metal insulator systems because they are generally

metallic at high temperatures. In the metallic state the resistivity is unexpectedly high.

In epitaxially grown thin films of La-Ca-Mn-O, MR is found to depend strongly on

film thickness and temperature. The CMR reaches its maximum (in excess of 106 per cent) at

110 K with the magnetic field at 6 T (Fig. 3.4.5). The peak occurs just below the Curie

temperature. For films thicker than -2000 A, the MR is reduced by few orders of magnitude.

The presence of grain boundaries leading to lattice strain is detrimental to achieving large MR.

The MR improves further on heat treatment.

Fig.3.4.5. Variation of magnetoresistance of a thin film of La-Ca-Mn-O as a function of

temperature.

Several theoretical approaches have been advanced to understand ferromagnetism and

the GMR effect in manganites. The ferromagnetism is interpreted in terms of the coupling

between charge carriers and the coupling between localized spin moments of Mn ions. There are

two striking features of GMR-CMR effect in manganites. Firstly, the MR peak can be shifted to
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occur at room temperature by adjusting the processing parameters. Secondly, the resistivity can

be manipulated by magnetic field to change by orders of magnitude.

3.4.7 Summary of the lesson

Different possible structures for ferromagnetic materials have been described in detail. Neel’s

theory of ferromagnetic materials that gives the information about the variation of

susceptibility with temperature has been discussed in depth. Different methods for determining

the structure of the magnetically ordered materials have been described in brief. Information

about other classes of novel magnetic materials that exhibit some extraordinary properties has

also been given.

3.4.8 Key words

Ferrimagnetism – Ferrites – Spinel structure – GMR and CMR magnetic materials.

3.4.9 Self – Assessment questions

1. What is ferrimagnetism? . Discuss briefly different structures of ferrites.

2. Discuss Neels theory of ferrimagnetism.

3. Discuss briefly the structural determination of magnetically ordered materials.

4. Write a note on GMR andf CMR materials.

3.4.10 Reference Books :

1. Elements of Solid State Physics – J.P.Srivastava ( PHI, New Delhi, 2003)

2. Theory of magnetism – D.C.Mattis ( Springer, 1985)



UNIT – IV

LESSON 1

SUPERCONDUCTIVITY AND PHYSICAL PROPERTIES OF

SUPERCONDUCTORS

Objective of the lesson

To discuss the phenomenon of the superconductivity and some of their physical properties.

Structure of the lesson

4.1.1. Introduction

4.1.2 Magnetic properties of superconductors

4.1.3. Electrical properties of superconductors

4.1.4. Thermal entropy

4.1.5. Microwave and infrared properties

4.1.6. Isotope effect

4.1.7. The two fluid model

4.1.1. Introduction

Generally, the resistance of metals deceases when cooled below room temperature. However,

prior to 1911, it was not known what limiting value the resistance would approach, when the

sample temperature is reduced to very close to 0 K. William Kelvin believed that electrons

flowing through a conductor would come to a complete halt as the temperature approaches

absolute zero. In 1911, Kamerlingh Onnes began to investigate the electrical properties of

metals in extremely low temperatures. Onnes measured the resistance of pure mercury as a

function of temperature. Much to his surprise there was no levelling off of resistance. Instead

the resistance at 4.2 K suddenly vanished (Fig. 1.1) and the current continued to flow without the

voltage drop. According to Onnes, "Mercury has passed into a new state, which on account of
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its extraordinary electrical properties may be called the superconductive state". Kamerlingh

Onnes called this newly discovered state, Superconductivity. For his discovery of

superconductivity, he was awarded the Nobel Prize in 1913. The magnetic field associated with

the super current was measured by File and Mills using nuclear magnetic resonance technique

and concluded that the decay time of the super current is not less than 100, 000 years. But in

some superconducting materials finite decay times are also observed.

The superconductivity appears only in some substances and the transition temperature Tc is

different for different substances.

Critical Temperature

The critical temperature, Tc, is the temperature at which the transition from normal substance to

superconducting vice versa occurs, in the absence of external magnetic field. The properties of

substance are normal above critical temperature Tc, whereas below Tc substance exhibits

superconducting properties (Fig.4.1.1)

Fig.4.1.1. a. DC resistivity as a function of temperature of a super conductor

b. The superconducting transition in impure and pure samples.
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4.1.2 Magnetic properties of superconductors

a. The critical field

The superconductivity property of a substance can be destroyed by an application of magnetic

field. The magnetic filed required to destroy the superconductivity is called the critical field, Hc,

above which it becomes normal and recovers its normal resistivity even at T < Tc. For a given

substance, the critical field decreases as the temperature is increased from T < Tc to Tc,

following the relation:

Hc (T) = Hc (0) [ 1 – ( T/Tc)
2 ] ……….(4.1.1)

Remember, the critical field need not be external. The current flowing in a superconducting ring

creates its own magnetic field, and if this current is large enough so that its own field attains the

critical value, then the superconductivity gets destroyed. This is called Silsbee’s rule.

b. Meissner Effect

The expulsion of magnetic flux completely from a superconductor is known as Meissner effect.

In 1933, Meissner and Ochsenfeld observed that a superconductor expels magnetic flux

completely (see Fig. 1.2). They also demonstrated that this effect is reversible, when the

temperature is raised from below Tc , the flux suddenly penetrates the specimen after it reaches

Tc , and the substance attains the normal state.



M.Sc. Physics 4 Superconductivity – Physical Properties

H > Hc H < Hc

Fig.4.1.2 The Meissner effect : The magnetic flux is expelled from superconductor.

The magnetic induction inside the substance is given by

B = μ0 ( H + M ) = μ0 ( 1 + χ ) H   ……….(4.1.2) 

where H is the external intensity of the magnetic filed, M is the magnetization of the medium,

and  χ is its magnetic susceptibility.  Since  B = 0 in the superconducting state,  it follows that   

M = - H,

It means that the magnetization is equal to and opposite to H. The magnetic susceptibility is

then given by

χ  =  M/H =  - 1       ……….(4.1.3) 

i.e., the superconductor is a perfect diamagnet.
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c. Type I and Type II superconductors

A material which exhibits complete Meissner effect is called Type I superconductor (Fig. 4.1.3 ).

The values of Hc are always too low for type I superconductors. Other class of superconductors

which can exist in a mixed state, with superconducting and normal regions (Fig.4.1.3) and are

known as type II superconductors. These materials are alloys or transition metals with high

values of the electrical resistivity in the normal state.

Type II superconductors have two critical fields, Hc1 < Hc < Hc2. In the region between Hc1 and

Hc2 the superconductor is said to be in the vortex state. They are characterized by a lower

critical filed Hc1 at which magnetic flux begins to enter the superconductor

Fig.4.1.3 Type I and type II superconductors

and an upper critical field Hc2 at which superconductivity disappears. A material can change

from type I to type II on the substitution of some impurities.
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4.1.3. Electrical properties of superconductors

A superconductor has no resistance. This would mean that there is no voltage drop along the

superconducting material when current is passed through and no power is dissipated by the

passage of the current. This is true for the direct currents of constant value. If the current is

changing an induced electric field is developed and as such some power is dissipated. Let us try

to understand the reason for this.

Below transition temperature the conduction electrons get divided into two classes; some of the

electrons behave as "superelectrons", which can pass through the superconductor without

resistance, the remaining behave as conduction electrons in a normal metal. In a

superconductor the current can in general be carried by both the normal and superelectrons.

However, below transition temperature the current is carried by superconducting electrons.

This can be explained as follows: if the current is to remain constant, there must be no electric

field in the superconductor, otherwise the superelectrons would be accelerated continuously in

this field and the current would increase indefinitely. If there is no field there is nothing to drive

the normal electrons and so there is no normal current. We conclude that a constant value of

total current would mean that all the current is carried by the superelectrons. A superconductor

is like two conductors in parallel, one having a normal resistance and the other zero resistance.

We can say that the superconducting electrons short circuit the normal electrons.

But if an alternating field of sufficiently high frequency is applied, a superconductor responds in

the same way as a normal metal. This is due to the superconducting electrons are in a lower

energy state than normal electrons and the applied frequency has enough energy to excite

superconducting electrons into the higher states where they behave as normal electrons. This

happens for frequencies higher than about 1011 Hz.
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4.1.4. Thermal entropy of superconductors

The entropy is a measure of disorder of a system. In all superconductors the entropy

decreases on cooling below the critical temperatures. The decrease in entropy between normal

state and superconducting state represents that the superconducting state is more ordered than

the normal state (See Fig. 4.1.4).

Fig.4.1.4. Variation of entropy of a super conducting and a normal conducting material

with temperature

The peaking Cv just below indicates an appreciable increase in entropy as T increases toward Tc

, and transition to the normal state becomes imminent. Thus the superconducting state has a

greater degree of order than the normal state.

4.1.5. Microwave and infrared properties

The existence of an energy gap in superconductors means that photons of energy less than the

gap energy are not absorbed. Nearly all the photons incident are reflected as for any metal

because of the impedance mismatch at the boundary between vacuum and metal, but for a very

thin (~ 20 A0 ) film more photons are transmitted in the superconducting state than in the normal

state. For photon energies less than the energy gap, the resistivity of a superconductor vanishes

at absolute zero. At T << Tc the resistance in the superconducting state has a sharp threshold at
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the gap energy. Photons of the lower energy see a resistance less surface. Photons of higher

energy see a resistance that approaches that of the normal state because such photons cause

transitions to unoccupied normal energy levels above the gap. As the temperature is increased

not only does the gap decrease in energy, but the resistivity for photons below the gap energy no

longer vanishes, except at zero frequency. At zero frequency the superconducting electrons

short-circuit any normal electrons that have been thermally excited above the gap. At finite

frequencies the inertia of the superconducting electrons prevents from completely screening the

electric field, so that thermally excited normal electrons now can absorb energy.

4.1.6. Isotope effect

The variation of critical temperature of superconductors with the average isotopic mass is called

isotopic effect. The transition temperature changes smoothly when different isotopes of the

same element are mixed. The empirical relation between the critical temperature and average

atomic mass can be represented as

Ma Tc = constant. ……….(4.1.4)

The original BCS model gave the result Tc is proportional to M-1/2 , so that a=1/2, but the

inclusion of coulomb interactions between electrons changes the relation.

4.1.7. The Two Fluid Model

According to the two fluid-model, introduced by Gorter and Casimir in 1934, the conduction

electrons in a superconductor fall into two classes: superelectrons and normal electrons. The

superelectrons experience no scattering, have zero scattering (perfect order), and long coherent

length (about 104 A0 ), but the normal electrons behave in the usual fashion as in normal

conductors. The number of superelectrons depend on the temperature. The concentration of

superelectrons, given by Gorter and Casimir, is

ns = n [ 1 – (T/Tc)
4 ] ……….(4.1.5)
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At T = 0 K all the electrons in the superconductor are superelectrons, but as T increases the

superelectrons decreases and all they become normal electrons at T = Tc.

4.1.8 Summary of the lesson

The phenomenon of superconductivity has been discussed in detail. Electrical and

magnetic of super conductors have also been discussed.

4.1.9 Key Terminology

Superconductivity – Zero resistivity – Meissner effect– Type I and Type II superconductors.

4.1.10 Self – Assessment questions

1. Give a brief account on the experimental survey of superconductivity

2. Write a note on

a). Meissner effect

b) Type I and Type4 II superconductors

c).Isotope effect

d) Microwave and infrared properties of superconductors

e) Energy gap of superconductors

4.1.11 Reference Books

1. Elementary Solid State Physics by M.A. Omar

2. Elements of Solid State Physics by J.P. Srivastava

3. Solid State Physics by Neil W. Ashcroft and N. David Mermin

4. Introduction to Solid State Physics by Charles Kittel



UNIT – IV

LESSON 4

BCS THEORY AND HIGH TC SUPERCONDUCTORS

Objective of the lesson

To discus the BCS theory of superconductivity and its predictions.

4.1 BCS THEORY OF SUPERCONDUCTIVITY

Three American physicists at the University of Illinois, John Bardeen, Leon Cooper, and

Robert Schrieffer, in 1957, developed a model that has since stood as a good mental picture of

why superconductors behave as they do. In 1972, Bardeen, Cooper, and Schrieffer received the

Nobel Prize in Physics for their theory of superconductivity (for Bardeen it was the second

Noble prize in Physics), which is now known as the BCS theory, after the initials of their last

names.

The BCS theory explains superconductivity at temperatures close to absolute zero. Cooper

realized that atomic lattice vibrations were directly responsible for unifying the entire current.

They forced the electrons to pair up into teams that could pass all of the obstacles which caused

resistance in the conductor. These teams of electrons are known as Cooper pairs. Cooper and

his colleagues knew that electrons which normally repel one another must feel an overwhelming

attraction in superconductors. The answer to this problem was found to be in phonons, packets

of sound waves present in the lattice as it vibrates. Although this lattice vibration cannot be

heard, its role as a moderator is indispensable.
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According to the theory, as one negatively charged electron passes by positively charged ions in

the lattice of the superconductor, the lattice gets distorted. This in turn causes phonons to be

emitted which forms a trough of positive charges around the electron. Fig. 4.4.1 illustrates a

wave of lattice distortion due to attraction to a moving electron. Before the electron passes by

and before the lattice springs back to its normal position, a second electron is drawn into the

trough. It is through this process that two electrons, which should repel one another, link up. The

forces exerted by the phonons overcome the electrons' natural repulsion. The electron pairs are

coherent with one another as they pass

Fig. 4.4.1
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through the conductor in unison. The electrons are screened by the phonons and are separated by

some distance. When one of the electrons that make up a Cooper pair and passes close to an ion

in the crystal lattice, the attraction between the negative electron and the positive ion cause a

vibration to pass from ion to ion until the other electron of the pair absorbs the vibration. The net

effect is that the electron has emitted a phonon and the other electron has absorbed the phonon. It

is this exchange that keeps the Cooper pairs together. It is important to understand, however, that

the pairs are constantly breaking and reforming. Because electrons are indistinguishable

particles, it is easier to think of them as permanently paired. Fig. 4.4.2 illustrates how two

electrons, called Cooper pairs, become locked together.

By pairing off two by two the electrons pass through the superconductor more smoothly. The

electron may be thought of as a car racing down a highway. As it speeds along, the car cleaves

the air in front of it. Trailing behind the car is a vacuum, a vacancy in the atmosphere quickly

filled by inrushing air. A tailgating car would be drawn along with the returning air into this

vacuum. The rear car is, effectively, attracted to the one in front. As the negatively charged

electrons pass through the crystal lattice of a material they draw the surrounding positive ion

cores toward them. As the distorted lattice returns to its normal state another electron passing

Fig. 4.4.2
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nearby will be attracted to the positive lattice in much the same way that a tailgater is drawn

forward by the leading car.

The BCS theory successfully shows that electrons can be attracted to one another through

interactions with the crystalline lattice. This occurs despite the fact that electrons have the same

charge. When the atoms of the lattice oscillate as positive and negative regions, the electron pair

is alternatively pulled together and pushed apart without a collision. The electron pairing is

favorable because it has the effect of putting the material into a lower energy state. When

electrons are linked together in pairs, they move through the superconductor in an orderly

fashion.

As long as the superconductor is cooled to very low temperatures, the Cooper pairs stay intact,

due to the reduced molecular motion. As the superconductor gains heat energy the vibrations in

the lattice become more violent and break the pairs. As they break, superconductivity

diminishes. Superconducting metals and alloys have characteristic transition temperatures from

normal conductors to superconductors called Critical Temperature. Below the superconducting

transition temperature, the resistivity of a material is exactly zero.

superconductors

The achievements of the BCS theory include:

1. An interaction between electrons can lead to ground state separated from excited states

by an energy gap. The critical field, the thermal properties, electromagnetic properties

etc consequences of the energy gap.

2. The electron-lattice-electron interaction leads to an energy gap of the observed

magnitude. The indirect interaction proceeds when one electron interacts with

the lattice and deforms it; a second electrons sees the deformed lattice and adjusts itself to

take advantage of the deformation to lower its energy. Thus the second electron interacts

with the first electron via the lattice deformation.
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3. The penetration depth and the coherence length emerge as natural consequences of the

BCS theory. The London equation is obtained for magnetic field that vary slowly in

space. Thus the central phenomenon in superconductivity, Meissner effect, is obtained in

a natural way.

Ginzburg and Landau Theory and flux quantisation

In 1950 Ginzburg and Landau developed a macroscopic theory for superconducting phase

transition based on a general thermodynamical approach to the theory of phase transition. They

considered the long-range order as fundamental and introduced a complex wave function  as an

order parameter to describe the superconducting state, where the density of the superconducting

electrons ns  2 . For a given temperature, the order parameter  is a function of position

in the material, i.e., it is not constant and vanishes above Tc. It is sometimes helpful to think of

 as the wave function for a Cooper pair. Since all Cooper pairs are in the same two-electron

state, a single wave function is sufficient.

Writing the wave function in terms the magnitude and a phase as

 =  exp (I  ), …………….(4.4.1)

then the current density ca be written as

 J = - ( 2 e2 A / mc + e h  / m ) 2 …………….(4.4.2)

where A is the vector potential.

Let us consider a superconducting material in the shape of a ring, we find in a closed path

  
2

dl.J  ( 2 e2 A / m c + e h  / m ) . dl=0 …………….(4.4.3)

   dsXAdlJ .. =  dsB. =  …………….(4.4.4)

where  is the flux enclosed by the ring. Since the order parameter is single valued, its phase

change around the closed path must be zero or an integral multiple of 2. Therefore,
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ndl  2.  …………….(4.4.5)

where n is an integer.

Substituting eqn. (4.4.4) and ( 4.4.5 ) in eqn. ( 4.4.3 ) and solving for , we find that the

magnetic flux enclosed in a ring must be quantized, i.e.

 = n h c / 2 e = n 0

where 0 = h c / 2 e = 2.07 x 10 -7 gauss - cm 2 is known as flux quantum.

4.4.2 HIGH TEMPERATURE SUPERCONDUCTORS (HTS)

Extremely low critical temperatures of conventional superconductors (the low Tc type)

put the most serious limitation on tQeir use in technological applications. Working with

devices that have to be cooled to temperatures in the range of liquid helium temperature

(4.2 K) is obviously not viable on any count. This has kept the scientists world over

relentlessly trying to discover~uperconductivity near room temperat\lre. A decisive

boost to this optimism came in 1986, when Bednorz and Muller synthesized metallic

oxygen-deficient copper oxide compounds of La-Ba(Sr)-Cu~O system with the

transition temperature of about 30 K. A vigorous activity towards the search for

materials with higher critical temperatures ensued following this nobel prize winning

announcement. It has resfilted in the development of a variety of materials with the

highest critical tempe}ature T c in the vicinity of 135 K. The Tc values being so high

compared to those of conventional superconductors, these materials are called high

temprtmture supe-reonduc-tors or high T c superconduct~(HTS).

15.8.1 Rare-Earth Cup rates: Structural Aspect

Chu and Coworkers (1987) earned the distinction of raising T c to 90 K in ceramics of

the Bal -x Y x CU03 -y system. With fastly improving methods of preparation of

characterization, a ceramic alloy Y IBa2Cu3~ -x could be prepared even in single crystal

form. In all respects including application
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this has emerged as the most thoroughly studied and tested system, often referred to as YBCO.

A ;

Isenes of this class of HTS has been produced with the Y atom being replaced by other rare-

earth elements such as Eu and Gd. On the basis of their stoichiometry, these types of ceramics

are

commonly called 123 systems. i

The crystal structure of the YBCO system is illustrated in Fig. 15.26(a). It can be

represented by an orthorhombic primitive cell in the superconducting state. The structure

is essentially an oxygen- defect modification of the perovskite structure with about one-

third oxygen positions vacant. All members of this series are axial crystals with alternating

CU02 planes [Cu(2), 0(2)] and oxygen atoms in both pyra.m-d-type and rectangular

coordination along the c-axis. Oxygen chains are formed along the b-axis with the

involvement of atoms in the rectangular planar structure. We will see a little later that the

oxygen vacancies in this chain may be interpreted to be actively involved in the

mechanism of superconductivity.

15.8.2 Bi-based and TI-based Cuprates: Structural Aspect

This class of HTS emerged within a year of the synthesis of 123 systems. These materials,

typically represented by Bi2Sr2Ca2Cu30,o and Tl2Ba2Ca2Cu30,o systems, show still higher T

c' The main classes

of ceramic superconductors with Tc> 90 K are compiled in Table 15.4. In accordance with their

stoichiometry, Bi- and Tl-based HTS are named as 2212 and 2223 systems, respectively.

Similar to 123 systems, 2212 and 2223 systems too have a layered structure along the

substantially larger c-axis. This layered structure is again considered to playa crucial role in the

mechanism of superconductivity. The unit cell shown in Fig. 15.26(b) has two distinct regions,

separated by two Bi-O (or Tl-O) planes. In the upper-half region, the copper atoms are located at

centres while in the lower-half region they are at comers of the Cu-O planes. The T c value is

strongly controlled by the number of CU02 layers in the unit cell. These ceramics differ from

one another only in the number

of CU02 layers per unit cell.
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15.8.3 Significant Properties of Cuprate HTS

Consider the example of YBCO which is the most thoroughly researched system. Its

resistivity around 90 K falls most sharply to an immeasurable value for x = 0 -0.1, where x

denotes oxygen deficiency. On increasing x, the transition temperature decreases. For x >

0.7, YBCO ceramics cease to be superconductors and behave as antiferromagnetic

insulators. On account of their strongly anisotropic crystal structure, the ceramic

superconductors show highly anisotropic electronic properties. There is a large difference

in the resistivities of YBCO, measured along and perpendicular to the c-axis (Pc and Pab in

Fig. 15.27). All the ceramic superconductors known to date show type II superconductivity

for which Bc is usually less than 10 mT and the largest estimates of Bc are around 340 T.' 2

A few extraordinary features of these HTS that might provide clue to the mechanism of

superconductivity are as under:

1. The resistivity in the normal state varies linearly with temperature.

2, A near zero oxygen isotope effect is observed (a -0-0.2). The vanishingly small isotope

: effect is considered an important evidence for non-phononic superconductivity in

cuprates.

I

3i The observed energy gaps are large, nearly 20-30 meV, and !!!:!!l = 3 to 4, which is kBTc

appreciably greater than the BCS estimate equalling 1.764.

4. The thermoelectric power shows a universal behaviour as a function of hole concentration.

5. The Hall coefficient is temperature dependent. ' 6, An inverted parabolic relation between

T c and the hole concentration is observed.
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Fig. 15.26 (a) Unit cell structure of a Y .Ba2Cu307 crystal. The numbers in brackets represent

the special sites jof oxygen and copper atoms in CUO2 layers. (b) Unit cell structure of

Bi2Sr2Ca2Cu3010 or Tl2Ba2Ca2Cu3010 crystal.

~

From the data on Hall coefficient it is inferred that a Cooper pair in YBCO type and

Bi- and 'n-based superconductors, is a pair of holes resulting in the p-type

superconductivity in these materials. Because of their high electronegativity, oxygen

atoms act as electron acceptors. For example, in

YBCO, both Y and Ba ions contribute two electrons separately to the bonding in CUO2 layers

where .
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the oxygen atoms trap these electrons. For small x (i.e. for a less oxygen-deficient

composition), there are enough oxygen atoms to swallow the electrons. This way more

holes are made available in the CUO2 planes to get bound into hole Cooper pairs. These

observations point to a quasi two-dimensional charge transport in CUO2 planes by

means of holes 'bound in Cooper pairs. These ideas are also applicable to the Bi and Tl

superconductors. Although most of the cuprates show p-type

Fig. 15.27 Measured resistivity of YBCO along and perpendicular to the c-axis (Pa and

Pab respectively) as a function of temperature. [After S.J. Hagen. T.W. Jing, Z.Z.

Wang, J. Horvath, N.P. Ong, Phys. Rev., B37,7928 (1988).]

superconductivity, there exist a couple of systems, namely NdzCuO4 and Ndz -

xCexCuO4 in which the conventional n-type superconductivity has been confirmed.

15.8.4 Fulleranes

~

The novel superconductors added most recently (1991) to the list of HTS are fullerenes

whose most prominent member is C6(). The transition temperatures of materials of this

class range from 15 K to about 48 K. The structure of a single C6() molecule, as shown

in Fig. 15.28, consists of 60 carbon atoms. It is a cluster of carbon atoms arranged in

the shape of a truncated icosahedron with 20 hexagonal and 12 pentagonal faces (as in

graphite, benzene and other organic molecules). The pentagons occur on account of the

topological requirement for producing a closed structure that resembles a football.
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4.4.3 Reference Books

1. Elementary Solid State Physics by M.A. Omar

2. Elements of Solid State Physics by J.P. Srivastava

3. Solid State Physics by Neil W. Ashcroft and N. David Mermin

4. Introduction to Solid State Physics by Charles Kittel



UNIT – IV

LESSON 2

ENERGY GAP AND RELATEED PROPERTIES OF

SUPERCONDUCTORS

Objective of the lesson

To discuss thermodynamical properties of super conductors and the concept of energy gap

Structure of the lesson

4.2.1. Thermodynamic properties

4.2.2. Energy gap

4.2.3. Electodynamics of superconductors- London equations

4.2.1. Thermodynamic properties

The superconducting transitions are reversible in nature and hence we can apply

thermodynamics for its study. By neglecting the volume changes and considering only the

magnetic work term, the Gibbs free energy can be written as

G = U –TS – M. Ba ……….(4.2.1)

A small change in applied field Ba at a constant temperature produces a small change in the free

energy given by

dG = - M. dBa ……….(4.2.2)

where all extensive quantities are defined for a unit volume.

After substituting M = - Ba / 0 and integrating ( 4.2.2), we get

a

B

a

BT

T

dB
B

dG
aa

.
0 0

,

0,
 












or Gs(Ba,T) = Gs(0,T) +
0

2

2
aB

……….(4.2.3)
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At the critical field Bc, where the normal and superconducting states are in equilibrium:

Gn(T) = Gs(Bc,T)

Here, we ignore any weak magnetism in the normal state and assume that the free energy Gn is

independent of field. Then, from ( 4.2.3)

Gn(T) - Gs(0,T) =
0

2

2
aB

……….(4.2.4)

The above relation shows that in zero field the superconducting state is lower in free energy by

0
2 2/ cB per unit volume. For a typical field of 0.1 -1.0 kG, this is 103 J m-3. In the presence of

weak fields below Tc' the specimen has to choose between gaining in energy by forcing all the

magnetic flux out (retaining superconductivity) and gaining in energy by letting the flux in

(going to the normal state). The superconducting state is found to be energetically favoured for

small fields, but not for large fields. The experimental behaviour of free energy as a function of

temperature in the two states is shown in Fig. 4.2.1.. Making use of (4.2.3), we can estimate the

critical field Bc(T) from this graph.

Fig. 4.2.1. Behaviour of Gibbs energy as a function of temperature in the superconducting and

normal states of a superconducting material.
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The difference of entropies is determined from (4.2.) with entropy S defined as S=  TG  / :

 Sn-Ss =
dT

dBB cc

0
 ……….(4.2.4)

Since the slope dBc/dT of the critical field curve is negative, SnSS, revealing that the

superconducting state is a 'more ordered state' than the normal state. Also, the slope dBc/dT

approaches zero at absolute zero, leading to the result Sn Ss as T 0, which is consistent

with the requirement of the third law of thermodynamics. Figure 4.2.2 presents a view of the

variation of entropy in the two states.

If Un and Us denote the internal energy in the normal and superconducting states respectively,

then

Un-Us = T(Sn-Ss) ……….(4.2.5)

Fig.4.2.2. Entropy of a superconducting material in the normal and superconducting states as a

function of temperature.

This gives the difference in heat capacities for a unit volume as

)( nsns SS
dT

d
TCC 
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=

2

0
2

2

0

. 









dT

dBT

dT

BdTB ccc


……….(4.2.6)

at T= Tc, Bc=0 , and then the above relation reduces to

2

0 cTT

cc
ns

dT

dBT
CC














……….(4.2.7)

This relation is known as the Rugers formula.

4.2.2. Energy gap

The energy gap in superconductors is entirely different nature from the energy gap in

insulators. In an insulator the gap is related to the lattice and in the superconductor the gap tied to

the Fermi gas. In superconductors the energy gap separates superconducting electron states lying

below the normal electron states. This gap decreases continuously to zero as the temperature is

increased to the critical temperature Tc. The energy gap in insulators on the other hand separates

filled valence band and vacant conduction band and is almost independent of temperature.

The heat capacity below Tc gave evidence for forbidden energy gap between normal super

conducting state.

Fig. 4.2.3. The variation of specific heat with temperature for a superconductor.
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Experiments at very low temperatures indicate that the specific heat of the electrons in that

region decreases exponentially, i.e.

Cv = a exp[-b(T/Tc)]. ……….(4.2.8)

This exponential behaviour implies the presence of an energy gap in the energy spectrum

of the electrons. This gap which lies just at Fermi level (Fig. 4.1.4) prevents the electrons from

being readily excitable. It also leads to a very small specific heat. The

Fig. 4.2.4 The density of states versus E for a superconductor, illustrating the gap

(magnified) at the Fermi level

width of the gap  is of the order of kTc, because when the substance is raised to Tc, it becomes

normal and its electrons are then readily excited. Thus

  ≈ k Tc. ……….(4.2.9)

Substituting Tc = 5 K one finds that  ≈ 10-4 eV. This energy gap is very small compared with

the gaps compared with the gaps of insulators or semiconductors and it is for this reason that

superconductivity appears only at very low temperatures. The critical field Hc versus

temperature curve is given in Fig 4.2.4 . The curve divides the Hc and T plane into two regions:

the normal and the superconducting. Suppose the substance is at temperature T1 < Tc . When

substance starts at point A and follows the vertical path AN, i.e., gradually increasing the filed, it

becomes normal at the point N. Thus the condensation energy is
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  ∆E = EN – EA ……….(4.2.10)

Since the substance acts as a perfect diamagnet along the path AN, ∆E is equal to the 

demagnetization energy,

2
00 2/1)( cc HdHHBdMHE     ……….(4.2.11)

per unit volume. This is the amount of energy needed to convert a system from the

superconducting into the normal state or it is the amount lost by the system when it makes the

transition from normal to the superconducting state. The maximum amount of condensation

energy is

 ∆E = ½  μ0 Hc
2(0), ……….(4.2.12)

Fig. 4.2.5 Calculation of the superconducting condensation energy

which occurs at T = 0 K. Let us obtain a useful relation between the critical filed and the critical

temperature. The only fraction of the electrons, those lying within a shell kTc of the Fermi

surface, is affected by the superconducting transition. This is because those electrons lying

deep inside the Fermi sphere require much greater energy for excitation. Thus the concentration

of effective electrons is

neff  ≈ n (kTc/EF), ……….(4.2.13)
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where n is the total concentration of conduction electrons. Each of the effective electrons

acquires an additional energy of about kTc in order to be excited across the gap. Therefore

 ∆E ≈ neff kTc = n[ (kTc)
2/EF ], ……….(4.2.14)

which is the same as the energy calculated in eqn ( 4.2.8). Equating these energies, one

finds that

Hc(0) ≈ (2nk2/μ0EF)1/2 Tc ……….(4.2.15)

That is, the critical field is proportional to the critical temperature. Thus the higher the transition

temperature, the greater the field required to destroy superconductivity. The eqn (4.2.15) can be

used to estimate Hc(0) if Tc is given or vice versa.

4.2.3. Electodynamics of superconductors- London equations

The Meissner effect did not account for the flux penetration observed in thin films. To explain

this phenomenon F. London and H. London, in 1935, modified the conventional equations of

electrodynamics.

The equation of motion for a superelectron in the presence of an electric field is

dt

dv
m s = - e E ……….(4.2.16)

The density of the supercurrent Js is given by

Js = - e ns vs ……….(4.2.17)

Taking the time differential both sides we get

dt

dJ s =
dt

dv
en s

s ……….(4.2.18)

from eqns (4.2.16) and (4.2.18), we can write

Emen
dt

dJ
s

s )/( 2 ……….(4.2.19)
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In the steady state, the current in a superconductor is constant, i.e.,

dt

dJ s = 0 ……….(4.2.20)

It means in the steady state the electric field inside a superconductor vanishes or the voltage drop

across a superconductor is zero.

Combining eqn. (4.2.20 ) with the Maxwell equation,

E
t

B





, ……….(4.2.21)

gives,
t

B




= 0.

This states that the magnetic field is constant regardless of the temperature. But we know that

the flux suddenly penetrates when temperature is increased toward Tc . So the above formalism

requires some modification. For this, let us substitute for E from eqn. (4.2.19) into eqn.

(4.2.21), which yields

t

B




= )(

2en

m

s

  x
dt

dJ s ……….(4.2.22)

Since this equation is invalid, because it predicts that
t

B




= 0, London postulated the relation as

B = 









2en

m

s

 x Js ……….(4.2.23)

and is called as the London equation. This equation is in agreement with the experimental

results. We can express it in another way by using the Maxwell equation,

 x B = μ0 Js

and taking the curl on both sides, we get

 x x B = ( . B) – 2 B = - 2 B = μ0  x Js ……….(4.2.24)
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substituting for x Js from eqn (4.2.23), we obtain

2B =  (μ0 ns e2/m) B. ……….(4.2.25)



Fig. 4.2.6.

Let us apply it to a simple geometry (see Fig. 4.2.6). The specimen surface is lying in the yz-

plane and the filed is applied in the y-direction. For this geometry, the eqn . (4.2.25) reduces to

2

2

x

By




= (μ0 ns e2/m) By ……….(4.2.26)

The solution of this equation is

By(x) = By(0) e-x/λ
L ……….(4.2.27)

  where   λ = (μ0 ns e2/m)1/2 ……….(4.2.28)

Eqn (4.2.28) shows that the field decreases exponentially as one goes from the

surface into the superconductor. Thus the magnetic field vanishes inside the bulk specimen, this

is in agreement with the Meissner effect.   The parameter λ known as the London penetration 
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depth, which represents the distance of the field penetration into the specimen. This has been

verified experimentally.

4.2.4 Summary of the lesson

The variation of entropy with the temperature of superconductor and its comparison with

the normal conductors is discussed. The origin of the energy gap and its related properties of the

superconductor are explained in detail. The equation for the London penetration depth is

derived.

4.2.5 Key Terminology

Entropy– specific heat – Gibbs free energy – energy gap.

4.2.6 Self – Assessment questions

1. Obtain the expression for Gibbs free energy of a super conductor .

2. Discuss variation of specific heat with temperature and the prediction of the energy gap

of a superconductor

3. Derive the London equation and explain the term London penetration depth.

4.2.7 Reference Books

1. Elementary Solid State Physics by M.A. Omar

2. Elements of Solid State Physics by J.P. Srivastava

3. Solid State Physics by Neil W. Ashcroft and N. David Mermin

4. Introduction to Solid State Physics by Charles Kittel



UNIT – IV

LESSON 3

Josephson effect and its consequences

Objective of the lesson

To discuss concept of Josephson effect,

Structure of the lesson

4.3.1.Tunneling and Josephson effect

4.3.2 Supercurrent quantum interference

4.3.1.Tunneling and Josephson effect

When a thin insulating layer ( about 30 A0 ) is sandwiched between two metals (Example, Al-

Al2O3-Pb) , it acts as potential barrier as far as the flow of conduction electrons is concerned.

Quantum mechanically electrons can tunnel across a thin potential barrier and in thermal

equilibrium they continue to do so until the potential of electrons in both the metals become

equal. When both the metals are normal conductors ( Fig.4.3.1 a) and if a potential difference is

applied across them, the potential of one them increases with respect to other. As a result

electrons tunnel through the insulating layer. The current-voltage relation across tunneling

junction is observed to obey Ohm's law at low voltages(Fig.4.3.1 b). However, when one of the

metals is a superconductor (Fig.4.3.1 c), no current is observed to flow across the junction until

the potential reaches a threshold value, eV = /2 ( half of the energy gap ). It is because the

energy states lying horizontally below EF in the normal metal are already occupied. Further,

since the Fermi level FF is the same



M.Sc. Physics 2 Josephson effect and its consequences

Fig.4.3.1 a Fig.4.3.1. b

Fig.4.3.1 c Fig.4.3.1 d Fig.4.3.1 e

throughout the system and lie in the middle of the energy gap of the superconductor, the

knowledge of the threshold voltage helps in determining the energy gap of the superconductor.

As the temperature is increased towards Tc , the threshold voltage decreases. The current-

voltage relations across the tunnelling junctions at different temperatures are shown in

Fig.4.3.1e. This tunnelling is called single electron tunnelling (or normal tunnelling) , where

electrons tunnel in singles through the insulated layer. When both the materials are

superconductors (Fig.4.3.1 d ), Josephson predicted that in addition to single electron tunnelling

, Cooper pairs not only can tunnel through the insulating layer from one superconductor to

another without dissociation, even at zero potential difference across the junction, but also their

wave functions on both sides would be highly correlated. This is known as Josephson effect.

The introduction of the insulating layer between two superconductors develops a phase

difference. Josephson showed that the tunnelling current is given by

I = I0 Sin 0 ……….(4.3.1)
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Where I0 is the maximum current that the junction can carry without a potential difference

across it and depends on the temperature. With no applied voltage, a dc current will flow

across the junction. This is called dc Josephson effect. A dc magnetic field applied through a

superconducting circuit containing two junctions causes the maximum supercurrent to show

interference effects as a function of magnetic field intensity. This effect can be utilized in

sensitive magnetometers.

Ac Josephson effect : A dc voltage applied across the junction causes rf current oscillations

across the junction. This effect has been utilized in a precision determination of the value of

e/ . Further, an rf voltage applied with the dc voltage can then cause a dc current across the

junction.

The detailed theory concerning this tunnelling phenomenon is discussed below.

a) Dc Josephson effect.

Our discussion of Josephson junction phenomena follows the discussion of flux quantization.

Let 1 be the probability amplitude of electron pairs on one side of a junction, and let 2 be

the amplitude on the other side. Let both superconductors be identical and we assume that they

are both at zero potential. The time-dependent Schrodinger equation   ti / applied

to the two amplitudes gives

2
1 


T

t
i  




1

2 


T
t

i  



……….(4.3.2)

Here T represents the effect of the electron-pair coupling or transfer interaction across the

insulator; T has the dimensions of a rate or frequency. It is a measure of leakage of 1 into the

region 2 and of 2 into the region 1. If the insulator is very thick, T is zero and there is no pair

tunnelling.

Let 1 = 12/1
1

ien and 2 = 22/1
2

ien ……….(4.3.3)
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  ……….(4.3.4)
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Multiplying equn. (4.3.4) by 12/1
1

ien  and equn.(4.3.5) by 22/1
2

ien  , we obtain, 



   ienniT
t

in
t

n
2
1

)(
2

1
21

1
1

1 








  ……….(4.3.6)
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

where   

Equating the real and imaginary parts of ( 4.3.6 ) and (4.3. 7 ), we get

sin)(2 2
1

21
1 nnT
t

n





; sin)(2 2

1

21
2 nnT
t

n





……….(4.3.8)
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……….(4.3.9)

If n1  n2 as for identical superconductors 1 and 2, we have from (4.3. 9 ) that

tt 






 21 
 0)( 12 






t
……….(4.3.10)

From (4.3. 8 ) we see that

t

n

t

n








 12 ……….(4.3.11)
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The current flow from region 1to region 2 is proportional to tn  2 or, the same thing,

tn  1 . We therefore conclude from (4.3.11 ) that the current J of superconductor pairs

across the junction depends on the phase difference  as

)sin(sin 1200   JJJ ……….(4.3.12)

where J0 is proportional to the transfer interaction T. The current J0 is the maximum zero-voltage

current that can be passed by the junction. With no applied voltage a dc current will flow across

the junction (Fig. 4.3.2), with a value between J0 and –J0 according to the value of the phase

difference 2-1. This is the dc Josephson effect.

Fig.4.3.3. Current voltage characteristics of Josephson junction

Ac Josephson effect

Let a dc voltage V be applied across the junction. We can do this because the junction is

an insulator. An electron pair experiences a potential energy difference qV on passing across the

junction, where q=-2e. We can say that a pair on one side is at potential energy –eV and a pair

on the other side is at eV. The equations of motion are

121  eVTti   ; 212  eVTti   ……….(4.3.12)

Current

Voltage

ic

VC
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Adopting the similar procedure as in the case of dc Josephson effect , we get

   ienniTieVn
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  ……….(4.3.13)

the real part of the equation (4.3.13) gives

  sin2 2
1

21
1 nnT
t

n





……….(4.3.14)

and the imaginary part gives,

    


cos/ 2
1

12
1 nnTeV

t





 ……….(4.3.15)

which differs from (4.3.8 ) by the term eV

Further, by a extension of (4.3.7 ), we have

   ienniTieVn
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whence

  sin2 2
1

212 nnTtn  ……….(4.3.17)

    


cos/ 2
1

21
2 nnTeV

t





 ……….(4.3.18)

From (4.3.17 ) and (4.3.18 ) with n1n2, we have
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  /212 eV
tt





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

 
 ……….(4.3.19)

By integrating eqn.(4.3.19 ) that with a dc voltage across the junction the relative phase of the

probability amplitudes vary as

     /20 eVtt   ……….(4.3.20)

The current is now given by

  /20sin0 eVtJJ   ……….(4.3.21)

The current oscillates with frequency

/2eV ……….(4.3.22)

This is the ac Josephson effect. A dc voltage of 1 micro voltage produced a frequency of 483.6

MHz. Further the equ.4.3.11 says that a photon of energy 2 eV is emitted or observed when an

electron crosses the barrier by measuring V and  , we can obtain the precise values of e/  .

The physical explanation of this tunnelling can be explained as follows. For the two

superconductors having different gaps, the Fermi level is in the middle of the gap. The energy

level diagram at thermal equilibrium is aw shown in Fig. 4.3.4 a. . There are some electrons

above the gap and holes below the gap in superconductor I . Such charge carriers can hardly be

found in superconductor II, because of its large energy gap.
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Figure 4.3.4. Energy diagram for two different superconductors separated by a thin

insulator (a) V=0, (b) V = (2-1)/e (c) V=(1+2)/e

When a voltage is applied, a current will flow and will increase with voltage(Fig.4.3.5) .Since

more and more number of thermally excited electrons in superconductor I can tunnel through the

insulator into the available states of superconductor II . When the applied voltage reaches 2-1

(Fig.4.3.4b) . It is energetically possible for all thermally excited electrons to tunnel across. It the

voltage is increased further the current decreases, because the number of electrons capable of

tunnelling is unchanged. But they now face a



Acharya Nagarjuna University 9 Centre for Distance Education

Figure 4.3.5 Current-voltage characteristics of a Josephson junction. There is a negative

resistance (2-1)/e < V < (1+2)/e

lower density of states. When the voltage becomes greater than 2+1, the current increases

rapidly because the electrons below the gap begins to flow(Fig.4.3.4c). Basing on these

explanations dc Josephson effect can now be defined as the phenomenon in which the junction

permits the flow of current without any net loss of energy, even if the potential difference across

it is zero, which is a familiar one in quantum mechanics. But the new thing is that as explained

above, if we apply a dc voltage V across the junction the result is an alternating current-the

constant voltage generates an oscillating current with a frequency /2eV as explained

above. This is the ac Josephson effeect

4.3.2 Supercurrent quantum interference

The Josephson tunneling in the presence of a magnetic field provides strong evidence

for the highly coherent nature of the superconducting state. Two Josephson junctions

arranged in a parallel combination are placed in a region which a magnetic field B is

impressed as shown in Fig. 4.3.6. A supercurrent starting in region I if divided into two parts
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and made to flow along parallel paths, each of which contains a tunnel junction. The currents

Ia and Ib crossing the tunnel barriers 'a' and 'b', respectively, reunite in region II. The

combined current shows oscillations characteristic of an interference pattern produced by

two coherent sources. By analogy with the interference of light, Ia and Ib are regarded as two

coherent sources of current whose disturbances, when superposed by the way of

recombination, produce an interference pattern.

Fig. 4.3.6. Experimental geometry for producing supercurrent quantum interference.

As seen in the ac Josephson effect the tunnelling of Cooper pairs causes a phase shift of

the total wavefunction of the superconducting state in region II relative to that in region I.

The phase difference 2-1 around a closed curve which encompasses the total magnetic flux

is given by

2-1=  dSB
ee

.
22


 ……… (4.3.28)

Let the phase difference between points I & II taken on a path through junction a be a When

taken on a path through junction b, the phase difference is b. in the absence of magnetic field

these two phases must be equal. Now let the flux  pass through the interior of the circuit than

from the eqn. (4.3.28), we have and The above relation states that the total phase difference

around the loop can be controlled by varying the magnetic field. The general expressions for a

and b in (4.3.24) may, however, be put as

a = 0 - 








c

e



2
………(4.3.29a )
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the total current is some of Ja and Jb. The current through each junction is

‘JTotal = J0 [sin (0 + 
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The cosine interference term characterizes the total current. This phenomenon is called

the supercurrent quantum interference. Its maxima are determined by the condition,


c

e
= s  ….(4.3.31)

where s is equal to integer

This condition states that for every addition of a flux quantum to the enclosed flux, a

new maximum appears. The total supercurrent is plotted as a function of magnetic field in Fig.

4.3.6 to demonstrate the quantum interference where each oscillation corresponds to a change

of flux quantum. Based on this principle, extremely sensitive magnetometers have been

developed. Even extremely weak magnetic fields such as those produced by currents in human

brain can be measured with these magnetometers. This magnetometer is called a SQUID

(Superconducting Quantum Interference Device).

Fig. 4.3.6 Total supercurrent in region II as a function of magnetic field
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4.3.3 Summary of the lesson

The phenomena of D.C and A.C Josephson effects have been discussed in detail. The

concept of quantum interference as a consequence of Josephson Effect has also been described.

4.3.4 Key Terminology

Josephson junction- D.C and A.C Josephson effects –supercurrent quantum interference

4.3.5 Self – Assessment questions

1. What is Josephson effect? Discuss in detail D.C and A.C Josephson effects.

2. Write a note on supercurrent quantum interference.

4.3.6 Reference Books :

1. Elementary Solid State Physics by M.A. Omar

2. Elements of Solid State Physics by J.P. Srivastava

3. Solid State Physics by Neil W. Ashcroft and N. David Mermin

4. Introduction to Solid State Physics by Charles Kittel.


